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APPENDIX A: EQUATIONS

For convenience, we reproduce the following useful equations from the manuscript:

xt = A(st)Etxt+1 +B(st)xt�1 + C(st) +D(st)vt, (A1)

xt = ⌦(st)xt�1 +Q(st)vt + �(st), (A2)

xt = a(st) + b(st)xt�1 + c(st)vt + ✏̃t. (A3)

Equation (A1) appears as equation (9) in the manuscript and describes the economic model.

Equation (A2) appears as equation (10) in the manuscript and describes MSV REE. Equation

(A3) appears as equation (11) in the manuscript and describes the adaptive learning agents’

perceived law of motion (PLM).
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APPENDIX B: PROOFS

B.1. Proof of Proposition 1

Consider a slightly modified version of the IT Taylor rule:

it = s̃t(�⇡⇡t + �yyt)� (1� s̃t)̄i,

where s̃t = ✏̃ if st = 0 and ✏̃ is some arbitrarily small positive constant; and s̃t = 1 otherwise.

We introduce s̃t to ensure that the inflation process is well defined, yielding the following

Markov-switching expectational di↵erence equation for inflation:

⇡t = (�⇡s̃t)
�1
Et⇡t+1 + (�⇡s̃t)

�1 ((1� s̃t) ī+ �ut) , (B1)

where �⇡ > 0 and yt = 0 for all t is imposed in the Taylor rule with flexible prices. From

Cho (2021),1 (B1) is determinate if and only if

r(F ) = r

0

B@
p11(�⇡)�2

p10(�⇡)�2

p01(✏)�2
p00(✏)�2

1

CA < 1,

where p10 = 1 � p11, p01 = 1 � p00, ✏ = �⇡ ✏̃, and r(F ) denotes the spectral radius of the

matrix F . The eigenvalues of F , �1 and �2, are the roots of the following quadratic equation:

f(�) = �

2 � (p00(✏)
�2 + p11(�⇡)

�2)�+ (p11 + p00 � 1)��2
⇡ ✏

�2 = 0.

1See Appendix D for further details.
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As demonstrated on p. 28 of LaSalle (1986), both eigenvalues, �1 and �2, are inside the unit

circle if and only if

|(p11 + p00 � 1)��2
⇡ ✏

�2| < 1,

|p00✏�2 + p11�
�2
⇡ | < 1 + (p11 + p00 � 1)��2

⇡ ✏

�2
.

The first condition for determinacy, |(p11+p00�1)��2
⇡ ✏

�2| < 1, is surely violated for �⇡ < 1

as ✏! 0. Hence, the model (B1) is indeterminate when ✏̃ ⇡ 0.

From McClung (2020), we obtain E-stability of the MSV solution to (B1) if

r

e(A) = r

e

0

B@
p11(�⇡)�1 � 1 p10(�⇡)�1

p01(✏)�1
p00(✏)�1 � 1

1

CA < 0,

where r

e(A) denotes the maximum of the real parts of the eigenvalues of A. Because the

trace of A, tr(A) = p00(✏)�1 + p11(�⇡)�1 � 2 > 0 for small ✏̃, at least one eigenvalue of A is

positive as ✏ approaches zero. Hence, the MSV solution is E-unstable.

B.2. Proof of Proposition 2

From Cho (2021), determinacy obtains if and only if

r(F ) = r

0

B@
p11(1 + �p)�2

p10(1 + �p)�2

p01 p00

1

CA < 1,

where p10 = 1 � p11, p01 = 1 � p00, and r(F ) denotes the spectral radius of the matrix F .

The eigenvalues of F , �1 and �2, are the roots of the following quadratic equation:

f(�) = �

2 � (p00 + p11(1 + �p)
�2)�+ (p11 + p00 � 1)(1 + �p)

�2 = 0.
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As demonstrated on p. 28 of LaSalle (1986), both eigenvalues, �1 and �2, are inside the unit

circle if and only if

|(p11 + p00 � 1)(1 + �p)
�2| < 1,

|p00 + p11(1 + �p)
�2| < 1 + (p11 + p00 � 1)(1 + �p)

�2
,

which holds provided that p00 + p11 � 1 > 0, �p > 0, and p00 < 1. From McClung (2020),

E-stability of the MSV solution is obtained if

r

e(A) = r

e

0

B@
p11(1 + �p)�1 � 1 p10(1 + �p)�1

p01 p00 � 1

1

CA < 0,

where r

e(A) denotes the maximum of the real parts of the eigenvalues of A. Because the

trace of A is negative (i.e., tr(A) = p11(1+�p)�1+ p00� 2 < 0), and the determinant of A is

positive (i.e., det(A) = (1� p00)(1� 1/(1 + �p)) > 0) under the assumptions in Proposition

2, both eigenvalues of A have negative real parts.

B.3. Proof of Proposition 3

First, obtain the model solution for t � T . For t � T , the model assumes the form:

xt = A

⇤
Etxt+1 +B

⇤
xt�1,

where (A⇤
, B

⇤) = (A(1), B(1)) and (A(1), B(1)) are defined in the main text (i.e., see (A1)).2

If �⇡ and �y are su�ciently large (e.g., �⇡ > 1 under IT or �p > 0 under PLT), then the

2Note that C⇤ = C(1) = 0 in this case. Also recall that we set vt = 0 for simplicity, which allows us to
write D

⇤ = D(0) = D(1) = 0, but results are not sensitive to this assumption.
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unique REE for t � T assumes the form

xt = ⌦⇤
xt�1, (B2)

⌦⇤ = (I � A

⇤⌦⇤)�1
B

⇤
.

One can easily show that (B2) is the unique REE law of motion for xt, t � T using a variety

of standard linear rational expectation techniques.3 For t = 0, . . . , T � 1 the model is given

by

xt =

8
>><

>>:

A

⇤
Etxt+1 +B

⇤
xt�1 if st = 1

A(0)Etxt+1 +B(0)xt�1 + C(0) if st = 0

(B3)

where A(0), B(0), C(0) are also defined in the main text. Let xj
t = xt|st = j for j = 0, 1. It

is immediately apparent that x1
t = ⌦

⇤
xt�1 for all t. For t = T � 1 we have

x

0
T�1 = A(0)ET�1(xT |sT�1 = 0) +B(0)x0

T�2 + C(0)

= A(0)⌦⇤
x

0
T�1 +B(0)x0

T�2 + C(0)

= (I � A(0)⌦⇤)�1
B(0)x0

T�2 + (I � A(0)⌦⇤)�1
C(0)

= ⌦(0)T�1x
0
T�2 + �(0)T�1.

Therefore we have

x

0
T�2 = (I � A(0)(p00⌦(0)T�1 + (1� p00)⌦

⇤))�1
B(0)x0

T�3

+ (I � A(0)(p00⌦(0)T�1 + (1� p00)⌦
⇤))�1(A(0)p00�(0)T�1 + C(0))

= ⌦(0)T�2x
0
T�3 + �(0)T�2.

3Standard linear RE techniques apply to this model class because of its linear form for t � T . See
Cagliarini and Kulish (2013), Kulish and Pagan (2017) and Gibbs and McClung (forthcoming) for more.
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Proceeding recursively backward in time:

⌦(0)t = (I � A(0)(p00⌦(0)t+1 + (1� p00)⌦
⇤))�1

B(0),

�(0)t = (I � A(0)(p00⌦(0)t+1 + (1� p00)⌦
⇤))�1 (A(0)p00�(0)t+1 + C(0)) ,

from t = T � 2 to t = 0. The solution for t � 0 is therefore given by:

xt =

8
>><

>>:

⌦(0)txt�1 + �(0)t if st = 0

⌦⇤
xt�1 if st = 1 or t � T.

(B4)

Define F (0)t as follows:

F (0)t = (I � A(0)(p00⌦(0)t+1 + (1� p00)⌦
⇤))�1

A(0)

for t = 0, . . . , T � 2, and

F (0)T�1 = (I � A(0)⌦⇤)�1
A(0).

Next, we recast the model and model solution in the form (A1) and (A2), respectively,

and assess mean-square stability, E-stability, and uniqueness of the REE (B4). Let s̃t 2

{0, 1, . . . , T} denote a T + 1-state Markov process with transition matrix:

P̃ =

0

BBBBBBBBBBBBBB@

0 p00 0 . . . 0 1� p00

0 0 p00 . . . 0 1� p00

...
. . .

...

0 . . . p00 1� p00

0 . . . 0 1

0 . . . 0 1

1

CCCCCCCCCCCCCCA

.
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Let s̃t = t if 0  t < T and st = 0; otherwise, s̃t = T .4 This implies restrictions on the

(i, j)-element of P̃ , P̃ij: P̃ij = Pr(s̃t+1 = j|s̃t = i) = p00 if j  T � 1 and i = j � 1 � 0;

P̃iT = 1� p00 for 0  i < T � 1 and P̃iT = 1 for i � T � 1; otherwise, P̃ij = 0. Similarly, let

(A(s̃t), B(s̃t), C(s̃t)) = (A(0), B(0), C(0)), ⌦̃(s̃t) = ⌦(0)s̃t , �̃(s̃t) = �(0)s̃t and F̃ (s̃t) = F (0)s̃t

for s̃t = 0, . . . , T � 1 and (A(T ), B(T ), C(T )) = (A⇤
, B

⇤
, 0), ⌦̃(T ) = ⌦⇤, �̃(T ) = 0 and

F̃ (T ) = F

⇤ = (I � A

⇤⌦⇤)�1
A

⇤. The model and solution are now in the form (A1) and

(A2), respectively. Following Costa, Fragoso and Marques (2005) and Cho (2021), one can

show that the solution (B4) is mean-square stable if and only if r(⌦⇤ ⌦⌦⇤) < 1, where r(A)

denotes the spectral radius of A. Equivalently:

r( ̄⌦̃⌦⌦̃) = r

0

BBBBBBBBBBBBBB@

0 0 0 . . . 0 0

p00⌦̃(1)⌦ ⌦̃(1) 0 0 . . . 0 0

0 p00⌦̃(2)⌦ ⌦̃(2) 0 . . . 0 0

...
. . .

...

0 . . . 0 0

(1� p00)⌦⇤ ⌦ ⌦⇤ (1� p00)⌦⇤ ⌦ ⌦⇤
. . . ⌦⇤ ⌦ ⌦⇤ ⌦⇤ ⌦ ⌦⇤

1

CCCCCCCCCCCCCCA

= r (⌦⇤ ⌦ ⌦⇤) < 1.

We have r(⌦⇤⌦⌦⇤) < 1 by the fact that (B2) is the unique REE law of motion for xt, t � T .

Next, consider uniqueness and let x̂t denote an arbitrary solution of the model. Then x̂t

can be expressed as: x̂t = ⌦̃(s̃t)x̂t�1 + �̃(s̃t) +wt where wt = F̃ (s̃t)Etwt+1. Since (B2) is the

unique mean-square stable solution for s̃t = T (i.e., r(F ⇤ ⌦ F

⇤) < 1), wt = 0 if s̃t = T . This

implies wt = 0 for s̃t 2 {0, . . . , T � 1} which can be verified by substituting Etxt+1 = Etx̂t+1

into the model and solving for x̂t and wt. Therefore, (B4) is the unique mean-square stable

4Note that to recover the specific model under consideration we impose the restriction: s̃0 2 {0, T}.
However, the proof of Proposition 3 applies to the more general case: s̃0 2 {0, 1, . . . , T}. We furthermore
note that there exists a unique stationary probability distribution, ⇡̄P̃ = ⇡̄, such that limt!1 ⇡t = ⇡̄ given
any ⇡0 where the ith element of ⇡0 is the probability that s̃0 = i.
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solution of (B3). Alternatively, following Cho (2021), we have

r( F̃⌦F̃ ) = r

0

BBBBBBBBBB@

0 p00F̃ (0)⌦ F̃ (0) 0 . . . 0 (1� p00)F̃ (0)⌦ F̃ (0)

0 0 p00F̃ (1)⌦ F̃ (1) . . . 0 (1� p00)F̃ (1)⌦ F̃ (1)

...
. . .

...

0 . . . 0 F̃ (T � 1)⌦ F̃ (T � 1)

0 . . . 0 F

⇤ ⌦ F

⇤

1

CCCCCCCCCCA

= r (F ⇤ ⌦ F

⇤) < 1,

where r(F ⇤⌦F

⇤) < 1 again follows from the fact that (B2) is the unique REE law of motion

for xt for t � T (e.g., see Cho (2021) or Appendix D). E-stability follows from r( ̄⌦̃⌦⌦̃) < 1

and r( F̃⌦F̃ ) < 1 by Propositions 1 and 2 of McClung (2020).

APPENDIX C: RATIONAL EXPECTATIONS EQUI-

LIBRIUM

As explained in section 2 of the main text, rational agents are assumed to possess com-

plete, homogeneous information of the economy and form true mathematical expectations,

Etxt+1, conditional on complete time-t information.5 A rational expectations solution is any

stochastic process {xt} that solves the model (A1) under the above-mentioned assumptions.

In general, there can be two types of solutions: (i) minimal state variable (MSV) solutions,

which express xt as a function of fundamental predetermined variables, xt�1, C(st), st, and

no other variables; and (ii) non-fundamental (sunspot) solutions, which express xt as a func-

tion of xt�1, C(st), st, and extraneous variables that do not appear in (A1). An REE is a

mean-square stable rational expectations solution.6 If a unique REE of (A1) exists, then it

5Note that agents do not know st+j for any j � 1 at time t.
6See the main paper for details about the literature on mean-square stability and alternative stability

and solution concepts.
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assumes the MSV form (A2) where

⌦(st) =

 
I � A(st)

X

st+1

pstst+1⌦(st+1)

!�1

B(st), (C1)

Q(st) =

 
I � A(st)

X

st+1

pstst+1⌦(st+1)

!�1

D(st), (C2)

�(st) =

 
I � A(st)

X

st+1

pstst+1⌦(st+1)

!�1 
C(st) + A(st)

X

st+1

pstst+1�(st+1)

!
. (C3)

We apply the forward method of Cho (2016) to obtain a solution of the form (A2), and

use the determinacy conditions in Cho (2016) and Cho (2021), which are tractable conditions

that depend only on A(st), B(st),⌦(st), p00, and p11. These determinacy conditions, when

satisfied, ensure that the MSV solution (A2) is the unique REE of the model (A1). Thus, if

a given MSV solution (A2) satisfies the conditions in Cho (2021), then all non-fundamental

solutions of (A1) and all other MSV solutions of (A1) are mean-square unstable. If the

determinacy conditions fail, and the MSV solution we obtain is mean-square stable, then we

have indeterminacy.7 In order to apply the solution approach and determinacy conditions of

Cho (2016) and Cho (2021) to a model of the form (A1), which contains a regime-switching

intercept term, we need to make slight modifications to the model (see Appendix D below).

APPENDIX D: REGIME-SWITCHING MODEL WITH

INTERCEPT

The model (A1) contains a regime-switching intercept term, C(st). Although recent works

(e.g., Bianchi and Melosi (2017)) have solved Markov-switching DSGE models with regime-

switching intercept terms, those that discuss the determinacy properties of Markov-switching

models typically assume C(st) = 0, for all st. Here, we show one way to handle the intercept

7 We always obtain at least one mean-square stable solution for any calibration of the model we consider
in this study. Therefore, we can always determine whether our model is determinate or indeterminate.
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term when solving the model using the forward method of Cho (2016), and we argue that the

determinacy conditions of Cho (2021) can be applied to a model with C(st) 6= 0. Throughout

the appendix we assume vt = 0 but the same result obtains if vt 6= 0.

Appendix D.1. Solution Method

The model (A1) assumes the form:

xt = A(st)Etxt+1 +B(st)xt�1 + C(st).

where st is an S+1-state first-order Markov process with transition matrix, P . The elements

of P are defined as pij = Pr(st+1 = j|st = i). As shown below, if a unique REE exists then

it assumes the MSV form:

xt = ⌦(st)xt�1 + �(st).

We use the forward method of Cho (2016) to obtain a solution for ⌦(st). The intercept

term, �(st), must satisfy (C3). Define F (st) =
⇣
I � A(st)

P
st+1

pstst+1⌦(st+1)
⌘�1

A(st),

G(st) =
⇣
I � A(st)

P
st+1

pstst+1⌦(st+1)
⌘�1

C(st), G = (G(0)0, G(1)0, . . . , G(S)0)0, � = (�(0)0

�(1)0, . . . ,�(S)0)0, and

 F =

0

BBBB@

p00F (0) . . . p0SF (0)

...
. . .

...

pS0F (S) . . . pSSF (S)

1

CCCCA
.

Then, given ⌦(st), the solution for � is unique and given by

� = (I � F )
�1

G
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assuming (I � F ) is non-singular.8

Appendix D.2. Determinacy

Consider the class of Markov-switching DSGE models given by (A1) assuming C(st) = 0 for

all st:

xt = A(st)Etxt+1 +B(st)xt�1. (D1)

From Cho (2016), we can express any rational expectations solution of (D1) as

xt = ⌦(st)xt�1 + wt, (D2)

wt = F (st)Etwt+1, (D3)

where ⌦(st) satisfies (C1), and

F (st) =

 
I � A(st)

X

st+1

pstst+1⌦(st+1)

!�1

A(st).

Thus, any solution of (D1) can be represented as the sum of an MSV component, xt =

⌦(st)xt�1, and a non-fundamental process, wt. Following Cho (2021), an REE of (D1) is any

mean-square stable rational expectations solution satisfying (D2) where wt is a mean-square

stable solution of (D3) and satisfies the explicit restrictions on solutions of (D3) stated in Cho

(2021). Also following Cho (2021), we say that (D1) is determinate if (a) (D2) with wt = 0

is the law of motion for the unique mean-square stable MSV solution of (D1); (b) a non-zero

mean-square stable solution of (D3) associated to the unique stable MSV solution which

satisfies restrictions stated in Cho (2021) does not exist. To assess determinacy, consider the

8 If (I � F ) is singular, then  F has a unit eigenvalue. McClung (2020) shows that the real parts
of  F must be less than one for the underlying equilibrium to be E-stable (in our numerical analysis, the
eigenvalues of  F are always inside the unit circle when E-stability is satisfied). Furthermore, we can show
that the underlying model is indeterminate if r( F ) > 1. Thus, we do not encounter singular (I � F ) in
cases where the REE is E-stable or the model is determinate.
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following matrices:

 ̄⌦⌦⌦ =

0

BBBB@

p00⌦(0)⌦ ⌦(0) . . . pS0⌦(0)⌦ ⌦(0)
...

. . .
...

p0S⌦(S)⌦ ⌦(S) . . . pSS⌦(S)⌦ ⌦(S)

1

CCCCA

 F⌦F =

0

BBBB@

p00F (0)⌦ F (0) . . . p0SF (0)⌦ F (0)

...
. . .

...

pS0F (S)⌦ F (S) . . . pSSF (S)⌦ F (S)

1

CCCCA
.

Theorem 1 gives the determinacy criterion for (D1), under the assumptions made explicit in

Cho (2021), which we maintain throughout this paper.

Theorem 1 Consider the model (D1) and suppose ⌦(st) exists and is real-valued. Then,

(D1) is a determinate model if and only if:

1. r( ̄⌦⌦⌦) < 1

2. r( F⌦F )  1.

Proof: see Propositions 1 and 2 in Cho (2021). ⌅.

Intuitively, r( F⌦F )  1 ensures that wt = 0 in an REE and that ⌦(st) is the only fixed

point of (C1) that gives a mean-square stable solution of (D1); and r( ̄⌦⌦⌦) < 1 ensures

that the MSV solution, xt = ⌦(st)xt�1, is mean-square stable. Hence, if r( F⌦F )  1 and

r( ̄⌦⌦⌦) < 1 then the MSV solution, xt = ⌦(st)xt�1, is the unique mean-square stable

solution of (D1).9 If r( ̄⌦⌦⌦) < 1 and r( F⌦F ) > 1 then there are multiple REE.

We examine a closely-related model, given by (A1), which is reproduced here:

xt = A(st)Etxt+1 +B(st)xt�1 + C(st).

9Note that Theorem 1 technically applies to a particular MSV solution (“minimum-of-modulus” (MOD)
solution). However, if r( F⌦F )  1 and r( ̄⌦⌦⌦) < 1 then the MSV solution, xt = ⌦(st)xt�1, is the MOD
solution. Moreover, if B(st) = 0, then the MSV is unique (and therefore the MOD solution by default). See
Cho (2021) for more information.
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Following Farmer, Waggoner and Zha (2011), we can recast the model in the form

x̄t = Ā(st)Etx̄t+1 + B̄(st)x̄t�1, (D4)

where x̄t = (x0
t, zt)

0, zt is a dummy variable satisfying z0 = 1 and zt = zt�1 for all t, and

Ā(st) =

0

B@
A(st) 0n⇥1

01⇥n 0

1

CA

B̄(st) =

0

B@
B(st) C(st)

01⇥n 1

1

CA .

Given the form of (D4) and following Cho (2016), any REE of (D4) (and therefore any REE

of (A1)) can be expressed as

x̄t = ⌦̄(st)x̄t�1 + w̄t, (D5)

w̄t = F̄ (st)Etw̄t+1, (D6)

where

⌦̄(st) =

 
I � Ā(st)

X

st+1

pstst+1⌦̄(st+1)

!�1

B̄(st),

F̄ (st) =

 
I � Ā(st)

X

st+1

pstst+1⌦̄(st+1)

!�1

Ā(st).

Given zt = zt�1 for all t and z0 = 1, and the restrictions on B̄(st) and Ā(st), one can now

recast the solution (D5) and (D6), and therefore any rational expectations solution of (A1),

as:

xt = �(st) + ⌦(st)xt�1 + wt, (D7)
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where wt satisfies (D3) and ⌦(st) and �(st) satisfy (C1) and (C3), respectively.

Following Cho (2021), an REE of (A1) is any mean-square stable rational expectations

solution satisfying (D7) where wt is a mean-square stable solution of (D3) and satisfies the

explicit restrictions on solutions of (D3) stated in Cho (2021). Also following Cho (2021),

we say that (A1) is determinate if (a) (D7) with wt = 0 is the law of motion for the unique

mean-square stable MSV solution of (A1); (b) a non-zero mean-square stable solution of (D3)

associated to the unique stable MSV solution which satisfies restrictions stated in Cho (2021)

does not exist. Consider r( F⌦F ) and r( ̄⌦⌦⌦) from above. Then by applying results from

Costa, Fragoso and Marques (2005) and Cho (2021), one can show that the MSV process

(D7) is the unique mean-square stable if and only if r( ̄⌦⌦⌦) < 1, and r( F⌦F )  1. If

r( ̄⌦⌦⌦) < 1 and r( F⌦F ) > 1 then there are multiple REE.10

APPENDIX E: ADAPTIVE LEARNING FRAMEWORK

AND E-STABILITY

This appendix provides additional details about the adaptive learning framework which are

helpful for understanding the E-stability condition. To derive the E-stability conditions we

first establish the information set, It, available to adaptive learning agents when forming

expectations at time t. The baseline assumption in our paper is that agents have “contem-

poraneous information”: (P, xt, st, vt) 2 It. We also assume that learning agents recursively

estimate the coe�cients, (a(st), b(st), c(st)), of the PLM (A3), as explained in section 2.3

of the manuscript. It is important to recognize a couple of facts about the agents’ PLM

and our model of adaptive learning. First, (A3) is correctly specified (i.e. the PLM has the

functional form of the MSV solution) but the agents do not know the MSV coe�cients and

must learn about them recursively. Second, because agents know st, they do not need so-

10In our applications, cases where  F⌦F of  F (as defined above) have a unit eigenvalue are not encoun-
tered or addressed.
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phisticated Markov-switching VAR techniques to estimate the coe�cients of (A3); they need

only estimate two linear models in real time (one for each regime) using standard techniques

such as the least squares method.

Under the assumption of contemporaneous information, agents form expectations in real

time as follows:11

Êtxt+1 =
X

st+1

pstst+1 {a(st+1)t�1 + b(st+1)t�1xt} ,

where a(st)t�1, b(st)t�1 and c(st)t�1 denote agents’ estimates of a(st), b(st) and c(st), respec-

tively, using all information available at the end of t�1. In what follows, we suppress the t�1

subscripts in the agents’ PLM and let (a(st), b(st), c(st)) represent (a(st)t�1, b(st)t�1, c(st)t�1).

If agents make decisions contingent on these forecasts (i.e., if we substitute Êtxt+1 into (A1)),

then the equilibrium at time t is given by

xt =

 
I � A(st)

X

st+1

pstst+1b(st+1)

!�1

(B(st)xt�1 +D(st)vt)

+

 
I � A(st)

X

st+1

pstst+1b(st+1)

!�1 
C(st) + A(st)

X

st+1

pstst+1a(st+1)

!
. (E1)

After observing xt, agents update their estimates of a(st), b(st) and c(st) using standard

techniques such as least squares, holding fixed their beliefs about a(j), b(j), c(j) where

j 6= st. Note that Appendix F and McClung (2020) provide algorithms for implementing

the recursive estimation of a(st), b(st) and c(st). From (E1), it is apparent that the agents’

11 Here, and throughout the paper, we use Êt to denote (potentially) non-rational expectations formed
under adaptive learning. Et denote rational expectations.
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beliefs, a(st), b(st), and c(st), are self-confirming only if

b(st) =

 
I � A(st)

X

st+1

pstst+1b(st+1)

!�1

B(st),

c(st) =

 
I � A(st)

X

st+1

pstst+1b(st+1)

!�1

D(st),

a(st) =

 
I � A(st)

X

st+1

pstst+1b(st+1)

!�1 
C(st) + A(st)

X

st+1

pstst+1a(st+1)

!
.

Note that these conditions are identical to (C1)-(C3). Therefore, learning agents’ beliefs only

converge to self-confirming values under adaptive learning with correctly-specified PLM (A3)

if the agents learn the coe�cients of an REE (A2). Formally, we say that adaptive learning

agents learn the MSV solution (A2) if (a(st), b(st), c(st)) ! (�(st),⌦(st), Q(st)) as t ! 1.

Following Proposition 1 of McClung (2020), we present the E-stability conditions that predict

if agents can learn a solution (A2) by estimating (A3) in real time and making forecasts based

on these estimates and contemporaneous information. When the E-stability conditions fail

(i.e., “E-instability” obtains), agents will generally not learn the MSV solution.

For the purpose of presenting the E-stability conditions, consider (A2) and define

F (st) =

 
I � A(st)

X

st+1

pstst+1⌦(st+1)

!�1

A(st),

where all matrices are from the model (A1) and the model equilibrium (A2) under study.

Under the contemporaneous information assumptions discussed in section 2, (A2) is E-stable

if the real parts of the eigenvalues of

 ⌦0⌦F =

0

B@
p00⌦(0)0 ⌦ F (0) p01⌦(0)0 ⌦ F (0)

p10⌦(1)0 ⌦ F (1) p11⌦(1)0 ⌦ F (1)

1

CA

 F =

0

B@
p00F (0) p01F (0)

p10F (1) p11F (1)

1

CA
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are less than one. See Proposition 1 of McClung (2020) for a formal proof.12

APPENDIX F: E-STABILITY AND CONVERGENCE

TO REE

This appendix demonstrates numerically that E-stability can predict convergence of the

learning equilibrium law of motion to the mean-square stable REE law of motion. As dis-

cussed in the main text, deflationary spirals do not occur if the learning equilibrium law

of motion converges to (A2) (i.e., because limt!1E0⇡t is finite in a mean-square stable

equilibrium).

To demonstrate convergence in practice, we suppose agents update �(k)t = (a(k)t, b(k)t, c(k)t)0

using the recursive estimator

�(k)t = �(k)t�1 +  (k)tR(k)�1
t zt(xt � �(k)0t�1zt)

0
, (F1)

R(k)t = R(k)t�1 +  (k)t(ztz
0
t �R(k)t�1), (F2)

where zt = (1 x

0
t v

0
t)

0,  (k)t = 1/t↵k if st = k and 0 otherwise, tk is the number of periods

such that st = k, ↵ 2 (0, 1] and k = 0, 1.13 Intuitively, (F1)-(F2) is a recursive (weighted)

least squares estimator of the two linear regime-dependent PLMs.

Under contemporaneous information,14 time-t equilibrium is determined as follows.

Step 1 At the end of t � 1, agents update �(k)t�1 using time-t � 1 information and

(F1)-(F2).

Step 2 At time-t, temporary equilibrium is given by substituting �(k)t�1 into (E1).

12Note that the proof of Proposition 1 of McClung (2020) assumes C(st) = 0. However, it is straightforward
to show that C(st) 6= 0 does not a↵ect any E-stability computations in the proof. Therefore, the value of
the regime-switching intercept is irrelevant to E-stability.

13We also consider cases with constant gain (i.e.  (k)t =  2 (0, 1]) as noted below.
14The qualitative results reported in this section hold if agents do not contemporaneously observe xt.
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Figure A1: Learning and Convergence to the REE
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(a) Inflation Targeting (p00 = 0.965) (b) Inflation Targeting (p00 = 0.99)

(c) Avg. Inflation Targeting (p00 = 0.965) (d) Avg. Inflation Targeting (p00 = 0.99)

(e) Price Level Targeting (p00 = 0.965) (f) Price Level Targeting (p00 = 0.99)

Note: The convergence results for various targeting rules are plotted for simulations. Convergence occurs if
maxj |bj,t� b̄j | ! 0 as t increases where bj,t in (F1) is the agents’ current estimate of the coe�cient b̄j in the
REE. The transition probability of p00 indicates the probability that the economy remains at the ZLB in
the next period. Average inflation targeting has the target window of m = 9 for all the simulations. Some
plotted simulations feature flat line segments that are a consequence of o↵-equilibrium beliefs being fixed.
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We can repeat Steps 1 and 2 to solve for temporary equilibrium at t+1 and so on. Figure A1

illustrates convergence to the REE law of motion in cases where E-stability conditions are

satisfied, and divergence in cases where the conditions are not satisfied. Each panel of the

figure illustrates the maximum distance between agents’ current estimate of any of the K

coe�cients of �(k)t for k = 0, 1 (i.e., bj,t for j = 1, . . . , K) and the true REE value of that

coe�cient (i.e., b̄j). Convergence occurs if maxj |bj,t� b̄j| ! 0 as t increases. In each panel we

assume that initial beliefs, �(k)0, are di↵erent from the true REE beliefs, and then simulate

each model 50 times. Further, we set p11 = 0.975 and consider two di↵erent values of p00 to

generate both E-stable and E-unstable models. Particular attention is paid to p00 = 0.965,

which ensures an expected ZLB duration equal to the duration of the 2008-2015 U.S. ZLB

event.15 The other value is given by p00 = 0.99, which leads to a longer expected duration

of the ZLB than p00 = 0.965. All other parameters are set at the benchmark values as

discussed in Section 4 of the manuscript. Across the simulations, we observe convergence to

REE when E-stability is obtained and �(k)0 is su�ciently close to the REE, and divergence

when E-stability conditions are not satisfied.

As depicted in Figure A1, the coe�cients in the simulation with inflation targeting for

both values of p00 diverge away from their REE coe�cients, whereas those for price level

targeting converge to their REE values. This shows that price level targeting can promote

real-time learning of REE more e↵ectively than inflation targeting. In addition, the simula-

tion for average inflation illustrates the importance of beliefs about transition probabilities;

under p00 = 0.965 and average inflation targeting, beliefs converge to the REE values, but

they diverge away from the REE if p00 = 0.99. The optimistic expectations of a shorter ZLB

duration help promote E-stability. Following the same intuition, we find that the optimistic

expectations (i.e., a shorter expected duration of the ZLB event such as p00 = 0.965) are

15The discrete-valued shocks are calibrated so that E(i⇤t |st = 0) < �ī and E(i⇤t |st = 1) > �ī where
i

⇤ denotes the shadow rate in the REE. To keep the speed of learning high in the simulations, we impose

 (k)t = max{1/t2/3k , 0.04}, though convergence would occur more gradually under the alternative assumption
of decreasing gain ( (k)t = 1/t↵k ). Finally, we impose vi,t ⇠ N (0,�2

i ) where i = s, d and �d = �s = 0.001 to
ensure that R(k)t is nonsingular in simulations.
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associated with a quicker convergence for price level targeting, and a slower divergence for

inflation targeting compared to the cases involving a longer expected ZLB duration such as

p00 = 0.99. These simulation results confirm our findings in Section 5.1.

APPENDIX G: ROBUSTNESS OF AIT

Here we depict determinacy regions for alternative calibrations of the AIT rule. In particular,

we recreate Figure 4 from the main text for di↵erent values of the structural parameters m

and �⇡, assuming instead that �⇡̄ = �⇡m (as opposed to �⇡̄ = �⇡ in Figure 4 from the

main text). The purpose of the supplementary figure is to illustrate how the AIT results

are sensitive to the averaging window (m), the policy rule coe�cients, and deep structural

parameters including � and .
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Figure A2: Determinacy and AIT under Alternative Parameterizations
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(a) Benchmark (� = 2,  = 0.05).
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(b) � = 2,  = 0.01.

.75 .8 .85 .9 .95 1
.75

.8

.85

.9

.95

1

m=5, m=9 and m=25
m=9 and m=25
m=25

(c) � = 5,  = 0.01.
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(c) � = 5,  = 0.01, �⇡̄ = 5.

Note: For various parameterizations, the REE for an AIT rule is depicted with respect to p00 and p11 as
follows. The white area depicts the indeterminacy region. This figure assumes the unweighted AIT rule with
�⇡̄ = �⇡m. The model parameters are set at the benchmark values throughout this exercise unless noted
otherwise.
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