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Abstract

This paper considers average inflation targeting (AIT) policy in a New Keynesian
model with adaptive learning agents. There are stability concerns regarding AIT
when agents have imperfect knowledge and the averaging window length is not pub-
lic knowledge. These stability risks near the inflation target steady state would likely
be avoided under inflation targeting (IT) or price level targeting (PLT). Near the zero
interest rate steady state, AIT under-performs PLT and does not necessarily outper-
form IT. Communicating the averaging window length or adopting an asymmetric
average inflation target that judges below-target average inflation more negatively
avoids these pitfalls.
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1 Introduction

In much of the 2008 -2021 period, central banks had to keep the policy interest rates at
approximately zero level, popularly called the zero lower bound (ZLB) or the liquidity trap.
The usual framework of inflation targeting became largely ineffective in the ZLB regime
and central banks had to revert to unconventional monetary policies. The ZLB regime
after the financial crisis inspired central bankers to think about alternatives to inflation
targeting. Price level targeting (PLT) and more complex strategies that can deliver above-
target “make-up” inflation after a period of low inflation at the ZLB were discussed. In
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2019 the Federal Reserve initiated a review of its monetary policy strategy. The review
process culminated in August 2020 in the announcement by the Chairperson Powell (2020)
that the policy framework of the Fed is to be based on Average Inflation Targeting (AIT).1

The research literature on AIT is still relatively small.2 Most research papers studying
AIT employ the rational expectations (RE) assumption, so that agents understand the
basic structure of AIT policy. This assumption is hard to reconcile with recent studies
on how expectations respond to AIT. Coibion, Gorodnichenko, Knotek II and Schoenle
(2023) found that the Fed’s August 2020 announcement of AIT had little effect on house-
hold inflation expectations. This result could suggest that households do not understand
the basic structure and implications of AIT. Salle (2021) examined data from laboratory
experiments involving AIT and finds that agents struggle to understand the lag structure
implied by AIT. On the other hand, Hoffman, Moench, Pavlova and Schultefrankenfeld
(2022) find that German households might understand the implications of an asymmetric
AIT strategy.

This paper questions whether AIT can stabilize average inflation and anchor long-run
expectations when key details of the policy regime are not public knowledge. To this
end, we consider the performance of AIT in a standard New Keynesian (NK) model when
private agents have imperfect knowledge of the economy and engage in learning to forecast
its dynamics. It is assumed that when forming expectations private agents statistically
estimate the laws of motion for the endogenous variables that they need to forecast. In
each period private agents make optimal decisions given the current forecasts and the
economy evolves as a sequence of temporary equilibria that are defined by forecasts and
private decisions in each period. As time progresses, new data leads to updating of the
forecast functions and new temporary equilibria.

This approach, called adaptive learning, relies on a more realistic model of expectations
formation and decision making than rational or boundedly rational decision rules under
RE.3 As desideratum, the monetary policy framework should be able to guide both actual
and expected inflation back to the target level following a shock to the economy. Conver-
gence of the learning dynamics under different policy rules has been widely studied in the
literature following the pioneering work in the early 2000’s.4

In benign circumstances the economy reaches a long-run REE (RE equilibrium), but
this depends on the structure of the economy and in particular the policy rule used by
the central bank and the private sector’s knowledge of the policy. As a starting point,
in Section 2 we follow much of the nascent AIT literature and specify a transparent and
symmetric L-period moving average inflation target. Under a transparent AIT regime, we
find that the central bank can hit their long-run inflation target steady state using a simple
AIT interest rate rule, provided that the economy is sufficiently close to the target when
the AIT regime is introduced. However, in some cases the economy cannot reach a long-run
REE if the averaging window is too long. Further, simulations from a fully nonlinear NK

1The European Central Bank also reformed its monetary policy framework and introduced a symmetric
2% inflation target in 2021.

2Nessen and Vestin (2005), Mertens and Williams (2019), Budianto, Nakata and Schmidt (2023) and
Amano, Gnocchi, Leduc and Wagner (2020) is a representative sample of the papers studying basics of
AIT. Andrade, Gali, Le Bihan and Matheron (2021) focuses on make-up strategies for monetary policy.
Jia and Wu (2023) considers ambiguities in communication with AIT.

3For example, IMF World Economic Outlook, October 2022 uses adaptive learning as the baseline
framework for modelling expectations formation. See IMF (2022), pp.63-66 and the Annex to the report.

4See e.g. Bullard and Mitra (2002) and Evans and Honkapohja (2003). Surveys of the subsequent
literature are provided, for example, in Gaspar, Smets and Vestin (2010) and Woodford (2013).
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model in Section 5 show that a transparent AIT policy does not necessarily outperform a
standard IT policy in a liquidity trap. Transparency is also inconsistent with the Federal
Reserve’s opaque strategy, which is not based on a published measure of average inflation.
See, e.g., the interview of John Williams in FT Live, November 13, 2020.

Our main framework (Section 3) additionally assumes that agents do not know the
central banks’s averaging window (“opacity”) when learning to forecast. The AIT policy
rule is assumed to satisfy the Taylor principle at the target equilibrium, but this is not part
of agents’ information set. In these circumstances the central bank that does not announce
the average inflation target may likely fail to steer inflation to the inflation target following
a shock to the economy. The instability of AIT is sensitive to the information in the
specification of agents’ forecasting models. Instability happens if the data window private
agents use is too short, i.e. the number of lags in agents’ forecasting model is smaller than
the number of lags in the AIT policy rule. Moreover, the instability problem is exacerbated
if prices are very flexible. In contrast, if agents’ perceived data window is as long as or
longer than the data window of the AIT policy rule, then after an exogenous shock the
private agents can learn the number of lags used in the AIT rule (see Section 4), and the
learning process can steer the economy back to the targeted RE equilibrium.

However, this requires that private agents are sophisticated econometricians. In practice
agents are not likely to use a sufficient number of observations of lagged data when forming
expectations. For empirics of inflation expectations, see e.g. Coibion, Gorodnichenko and
Kamdar (2018) and Coibion, Gorodnichenko, Kumar and Pedemonte (2020). Furthermore,
agents with a perceived window that matches or exceeds the true averaging window can
fail to learn the REE when the true window length is sufficiently long. Thus, in all cases,
there are risks to economic stability when the central bank symmetrically targets a simple
moving average of inflation with long averaging window.

The central bank may avoid these pitfalls of a symmetric target by adopting an asym-
metric policy that dramatically shortens the averaging window when inflation is running
high. See Section 6. We illustrate the benefits of asymmetry by assuming that policy re-
sponds to the output gap and a moving average of inflation when average inflation is below
target, but only responds to current inflation and output when average inflation is high.
Other variations on models of AIT which shape stability risks to the economy, including
weighted average schemes, are considered in Section 7, and directions for future work are
discussed in Section 8.

These results call for a cautious approach to targeting an opaque measure of average
inflation. Risks to the stability of inflation emerge if the averaging window is opaque and
moderately lengthy. The central bank can minimize such risks by keeping the window
fairly short and encouraging forecasters to adopt sophisticated forecasting models that
incorporate a large finite number of lags of inflation, or by responding asymmetrically to
average inflation depending on whether inflation is low or high. At the time of this writing,
the Fed maintains an opaque AIT strategy, but this need not imply a symmetric view of
the target.5 In fact, Chairman Powell clarified in his announcement of the new regime at
the 2020 Jackson Hole Symposium that the Federal Reserve would not be tying their hands
“to a particular mathematical formula that defines the average” and that their “approach
could be viewed as a flexible form of average inflation targeting” (Powell (2020)). This

5It is currently difficult to precisely assess the symmetry of the Federal Reserve’s new strategy. Tolerance
of some undershooting of the 2% inflation target following the recent surge in inflation may suggest a
symmetric approach to AIT.
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flexible approach can allow for periodic shortening of the averaging window which helps to
avoid unnecessary instability risks.

Our findings furthermore cast doubt on the notion that AIT is a clear compromise
between PLT and IT. Under RE, PLT can deliver superior outcomes in terms of social
welfare, but there are concerns about the performance of PLT if private sector agents
mis-perceive the policy rule and objective. IT regimes, on the other hand, have been
implemented successfully and have gained credibility in much of the world. AIT is thought
to capture some of the benefits of PLT while staying close to the foundations of IT (e.g.
see Nessen and Vestin (2005)). However, we show that AIT can introduce new stability
risks that are not observed under PLT or IT when agents are learning.

In Section 2 we introduce the AIT formulation, develop the analytical framework and, as
reference point, study the transparent case. Sections 3 through 7 present the main stability
results about the lack of robustness of AIT under imperfect knowledge and consider various
alterations to the AIT framework. Various modelling details and proofs of the results are
in the several appendices.

2 New Keynesian Model

This section develops a standard New Keynesian (NK) model of learning. In the model, a
continuum of household-firms produce a differentiated consumption good under monopo-
listic competition and price adjustment costs in the spirit of Rotemberg (1982).6 Agents
optimize over the infinite horizon in accordance with the “anticipated utility” approach for-
mulated by Kreps (1998) and discussed in Sargent (1999) and Cogley and Sargent (2008).7

The utility and production functions are assumed to be identical and agents have ho-
mogenous point expectations, so that there is a representative agent.8 Government uses
monetary policy, buys a fixed amount of output and finances spending by taxes and issues
of public debt. Monetary policy is conducted in terms of an interest rate rule in the cashless
limit. It should be recalled that the nonlinear version of the model we use has two steady
states, the inflation target and liquidity trap (or ZLB) steady states, when inter-
est rate setting follows a suitable nonlinear Taylor rule entailing an active policy response
at the target level of inflation. See e.g. Benhabib, Schmitt-Grohe and Uribe (2001) and
Benhabib, Evans and Honkapohja (2014) for the RE and learning versions of the model.
The existence of two steady states is a key feature also with the PLT and AIT policy rules.

We note that a classical monetary model with full price flexibility is obtained from our
model in the limit by setting the adjustment costs to zero. In this case the Phillips curve is
replaced by a static first order condition for consumption and labor supply. The distinction
between price stickiness and price flexibility turns out to be important for the results and
both cases are discussed below. The derivation of the model is given in Benhabib et al.

6The Rotemberg model enables study of ZLB regime and global dynamics in the nonlinear system. In
contrast, use of Calvo (1983) model of price stickiness, which is the most common NK model, requires
linearization. The results of the two models are very similar in the vicinity of the target steady state (see
Appendix C.3).

7Optimization over infinite horizon is currently the standard assumption in the literature on learning.
At the other extreme, one could assume ‘Euler equation’ learning with agents having one-period ahead
horizon. In the current context both approaches give practically the same results for local stability.

8Point expectations are an assumption of bounded rationality. It means that agents treat the conditional
expectation of a nonlinear function of random variables as equal to the nonlinear function of the conditional
expectations.
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(2014) and Honkapohja and Mitra (2020). For completeness, formal details of the two
versions of the model are derived in Appendix A.

In sections 2 through 4 the linearized model is used to discuss the performance of AIT
policy when the economy is near the inflation target steady state and expectations are
fairly well anchored. If stability concerns arise in these cases, then we should not expect
the policy regime to succeed when inflation is far away from the target (such that the
ZLB binds, for example). Section 5 uses the nonlinear model to discuss possibilities of
convergence of the economy back to the inflation target when the interest rate is at or very
near the ZLB for the interest rate.

2.1 Average Inflation Targeting (AIT)

Formally, it is assumed that the central bank uses an interest rate rule that depends on
average inflation and the deviation of output from its target level.

Rt = 1 +max[R̄− 1 + ψp[
Pt − P̄t,L
P̄t,L

] + ψy[
yt − y∗

y∗
], 0], (1)

P̄t,L = (π∗)LPt−L and (2)

πt =
Pt
Pt−1

. (3)

Rt is the (gross) nominal interest rate, P̄t,L denotes the target price level and πt is the
actual (gross) inflation rate. ψp and ψy are parameters in the policy rule. It is formulated
with a target level for (gross) inflation π∗ and P̄t,L is computed by compounding the actual
price level L periods ago using target inflation rate π∗ of the targeted steady state. y∗ is the
level of output when inflation is at its target. The rule (1) incorporates the ZLB. Notice
that (1) becomes a simple inflation targeting rule when L = 1. As L → ∞, (1) becomes a
Wicksellian PLT rule with inflation target path given by P̄t,∞ = (π∗)tP0 for all t.9

The rule (2) implies that

Pt
P̄t,L

=
Pt
Pt−1

...
Pt−(L−1)

(π∗)LPt−L
= (π∗)−L

L−1∏
i=0

πt−i,

so the basic AIT rule with the ZLB constraint can be written as

Rt = R(yt, πt, ..., πt+1−L) (4)

≡ 1 + max

[
R̄− 1 + ψp

[
L−1∏
i=0

πt−i

(π∗)L
− 1

]
+ ψy

(
yt
y∗

− 1

)
, 0

]
.

The linearized expression for the interest rate rule (4) near the target steady state is

R̂t = ψp

L−1∑
k=0

π̂t−k
π∗ + ψy

ŷt
y∗
, (5)

where ŷt, π̂t and R̂t denote deviations from the target steady state, so e.g., π̂t = πt − π∗.

9However, the model properties are not the same for the AIT limit (L→ ∞) and PLT (L = ∞), as we
discuss in section 3.2 and Appendix C.4.
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2.2 Behavioral Rules

The NK model with price adjustment costs is often used and its details are well known,
so we start directly with the linearized behavioral rules. We use the so-called infinite-
horizon framework, where agents focus on expectations over the infinite future.10 In each
time period they make optimal decisions subject to, in general, non-rational expectations
obtained from a forecasting model with parameters estimated using past data. Over time
the parameters of the forecasting model are revised as new data becomes available.

The analysis relies on two behavioral rules of private agents: the Phillips curve and the
consumption function.11 The linearized Phillips curve takes the form

π̂t = κŷt + κ

∞∑
j=1

βj ŷet+j, (6)

where x̂ denotes a linearized variable, and κ is the slope of the Phillips curve and β is the
subjective discount rate. Here ŷt and π̂t denote output and (gross) inflation as deviations
from the non-stochastic target steady state. Superscript e indicates expectations while
subscripts indicate the periods t+ j, j = 0, 1, 2, ....

The form (6) of the Phillips curve is special as expected future inflation does not directly
affect current inflation. (There is an indirect effect via current output in the Phillip’s curve.)
This formulation is based on the assumption of a representative agent and a simplifying
assumption about expectations. One could allow for heterogenous expectations along the
learning path. The current formulation facilitates the stability analysis without loss of
generality in the results.

The linearized aggregate demand function takes the form

ŷt = − c∗β

σπ∗ R̂t +
∞∑
j=1

βj
(
1− β

β
ŷet+j −

c∗

σ

(
βR̂e

t+j(π
∗)−1 − π̂et+j(βπ

∗)−1
))

. (7)

Here c∗ and π∗ denote the levels of consumption and inflation at the target steady state.
σ is the utility function parameter.

There is also a government that consumes amount gt of the aggregate good, collects the
real lump-sum tax Υt from each consumer and issues bonds bt to cover financing needs. ḡ,
g̃t are the mean and random parts of government spending. Since we consider aspects of
stability that are unaffected by the government spending shock, we assume g̃t = 0 unless
otherwise stated throughout the paper. See Appendix A for more details on government
behavior. Moreover, it is assumed for simplicity that consumers are Ricardian in the
sense that they amalgamate their own intertemporal budget constraint and that of the
government (where the latter is evaluated at price expectations of the consumer).

Finally, an “active” or anti-inflationary monetary policy regime is assumed:

10There are many different formulations of bounded rationality. One aspect is agents’ time horizon:
agents might have a limited forecasting horizon. See Honkapohja, Mitra and Evans (2013) for discussion
and Hommes, Mavromatis, Ozden and Zhu (2023) for recent empirical applications. Other formulations of
expectations formation include natural expectations, see Fuster, Laibson and Mendel (2010) and diagnostic
expectations, see Bordalo, Gennaioli and Schleifer (2022). Modeling behavior mechanically or based on
optimization is another central aspect of bounded rationality, for recent discussion see e.g. Eichenbaum
(2023).

11The general description of the nonlinear model and the formal derivation are in Appendix A and its
subsections A.1, A.2 and A.3. The linearization is carried out in subsection A.4.
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Assumption The AIT rule satisfies the Taylor principle

ψp > β−1π∗ and π∗ ≥ 1. (8)

(8) is a sufficient condition for (local) determinacy of the target REE under AIT policy.12

The left-hand side of (8) gives the Taylor rule coefficient for inflation, while the right-
hand side is the product of the inverse of real discount factor and gross inflation (i.e. the
nominal discount factor) at the target steady state. We impose the Taylor Principle as it is
a standard assumption in monetary policy analyses, but we note that it is not a necessary
condition for many results in this paper. For example, Propositions 1-3 hold under the
weaker restriction: ψp > (Lβ)−1π∗ if L > 4.

When the Taylor Principle is satisfied (and g̃t = 0 as explained above), the unique
bounded equilibrium law of motion for X̂t = (ŷt, π̂t, R̂t)

T assumes the minimal state variable
(MSV) form:

X̂t =
L−1∑
j=1

AREj X̂t−j. (9)

A rational agent would make forecasts consistent with the REE law of motion (9), which
requires knowledge of the averaging window (L).

2.3 Stability of the Target Steady State Under Learning

We start by considering as a benchmark the case of “transparency” in which agents know
the averaging window L (but not the policy coefficients, ψp or ψy). The linearized model
comprises of the Phillips curve (6), the aggregate demand function (7) and the AIT interest
rate rule (5). Expectations, {πet+j, yet+j, Re

t+j}j≥0, are formed under adaptive learning.
Following the literature on adaptive learning, it is assumed that each agent has a model

for perceived dynamics of state variables {πt+j, yt+j, Rt+j}, also called the perceived law
of motion (PLM). The PLM parameters are estimated using available data and the
estimated model is used for forecasting. This gives the expectations {πet+j, yet+j, Re

t+j}j≥0

about the future in the current period. The PLM parameters are re-estimated when new
data becomes available in the next period. Convergence of the learning dynamics toward
the inflation target REE is a fundamental question of interest. For further details see
Appendix A, Section A.5.

In linearized models, a common formulation is to postulate that the PLM is a linear
regression model, where endogenous variables depend on intercepts, observed exogenous
variables and possible lags of endogenous variables. The estimation is based on least squares
or related methods. In each period the estimated PLM is used to compute the expectations
in the structural model. This yields the temporary equilibrium for the period, also called
the actual law of motion (ALM).

Now we formally introduce the general multivariate framework. The general framework
is a linearized multivariate model in which agents are forward-looking with infinite horizon
and there are L− 1 lags of endogenous variables. The structural form is

X̂t = K +
∑∞

i=1
βiMX̂e

t,t+i +
∑L−1

j=1
NjX̂t−j.

12Under flexible prices an analytic proof is available and under sticky prices the result holds for the
calibrations used. The material is available upon request.
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Here X̂e
t,t+i denotes expectations in period t of period t + i endogenous variables. K is a

vector of constants. M is the matrix of structural parameters with coefficients given by
(6), (7) and (5). The matrices Nj contain the parameters describing the influence of lagged
variables of period t− j, in particular the parameters of the AIT policy rule (5). Stacking
the system into first order form gives the temporary equilibrium system of equations

X̃t = K̃ +
∑∞

i=1
βiM̃X̃e

t,t+i + ÑX̃t−1, (10)

where X̃t = (X̂T
t , . . . , X̂

T
t−(L+2))

T , X̃e
t,t+i =

(
(X̂e

t,t+i)
T , 0, . . . , 0

)T
,

M̃ =


M 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

 , Ñ =


N1 N2 · · · NL−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0

 ,

N1 = ... = NL−1 = N̂ and N̂ is given in the proof of Proposition 1 (i). Transparency affords
agents the ability to include the correct number of lags of inflation in their PLM.

Definition Agents are learning with transparency if their linear PLM includes exactly
L-1 lags of inflation.

To be concrete, the PLM under transparency is

X̂t = A0 +
∑L−1

j=1
AjX̂t−j.

The main question of interest is whether agents’ PLM will converge to the REE law of
motion (9) asymptotically as new data becomes available and agents update their PLM
estimates accordingly. Recall that transparency does not imply rationality; learning agents
have imperfect knowledge about the economy’s structure, including coefficients of the pol-
icy rule such as ψp, so they estimate the coefficients of their PLM in each period, t, using

observable macro data ({X̂k, g̃k}t−1
k=0) and a recursive form of least squares. However, trans-

parency does mean that learning agents know to include the correct variables in their PLM,
which may be essential for agents to learn the target equilibrium (cases in which agents
include too few lags of inflation (under-parameterization) or too many lags (overparame-
terization) in their PLM are studied below).

It is useful to express the PLM in vector form

X̃t = Ã0 + ÃX̃t−1, (11)

where

Ã =


A1 A2 · · · AL−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0

 and Ã0 =


A0

0
...
0

 .

after substituting the PLM (11) into the ALM (10), the temporary equilibrium induces a
mapping PLM→ALM,

Ã →
∑∞

i=1
βiM̃Ãi+1 + Ñ , (12)

Ã0 → K̃ +
∑∞

i=1
βiM̃(I + Ã+ ...+ Ãi)Ã0,
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denoted as T (Ã0, Ã), in the space of PLM parameters. Notice that the REE coefficients in
(9) are a fixed point of this mapping. Further, this mapping yields a differential equation

d(Ã0, Ã)

dτ
= T (Ã0, Ã)− (Ã0, Ã), (13)

where τ is virtual time. Local stability conditions of (13) at the fixed point characterized
by (9) yield the E-stability conditions which are usually the key conditions for convergence
of real-time adaptive learning to the REE of interest.13 The conditions are formally given
in Appendix A.6, see equations (63).

For brevity, we only check that these stability conditions are satisfied in a calibrated ver-
sion of the model for the case of learning with transparency. It should be emphasized that at
times our analysis must use calibrations of the model as explicit economically interpretable
theoretical conditions cannot always be obtained. The calibrations used throughout the
paper are taken from the literature on New Keynesian models, and our objective is only to
illustrate the likely implications for the general model. As such, we do not check that our
calibrated models have strong empirical support. In the literature suggested calibrations
for price adjustment costs, γ, which affect the Phillips curve slope κ (i.e., ∂κ/∂γ < 0 and
limγ→0κ = +∞), vary a great deal as they depend on estimates of frequency of price ad-
justment and markup and there are different estimates for both. For recent discussion see
Honkapohja and Mitra (2020) who use the alternative values γ = 42, 128.21 or 350 for the
price adjustment cost parameter, consistent with empirical evidence. For conciseness, only
a single standard calibration is adopted for other parameters of our quarterly framework:
π∗ = 1.005, β = 0.99, α = 0.7, ν = 21, σ = ε = 1, and g = 0.2. Policy parameters for the
AIT rule are set at ψp = 1.5, ψy = 0.125.

For the case of transparent AIT, our numerical E-stability results are summarized as
follows:

Remark 1: Assume that the policy rule (5) satisfies the Taylor principle (8) and agents
are learning with transparency. The target REE is E-stable under fully flexible or sticky
prices if L is not too large, but is not E-stable for sufficiently large L when prices are sticky.

Remark 1 highlights that transparency can anchor agents’ expectations. However, con-
vergence of learning is not likely to occur if the window length (L) is too large. We find
that when prices are relatively flexible (γ = 42), the REE is E-unstable for L > 36 (9
year window), whereas the REE is E-unstable for L > 22 (5.5 year window) when prices
are relatively rigid (γ = 128.21 and γ = 350). Thus, there are risks to instability when
the central bank is transparent about the window, the window is too long, and a unique
bounded REE exists. However, plausible calibrations of the model indicate that AIT can
guide the economy to the target equilibrium if the averaging window is fairly short.

3 Imperfect Structural Knowledge and Learning

Recalling that the Federal Reserve has given little information about the details of AIT, we
now start to consider situations where the policy structure, including the averaging length,
L, is not known to the agents. Under this opacity about the monetary policy framework,
agents try to forecast the interest rate as well as output and inflation rate without any

13Appendix A.5 gives more detailed discussion of real-time algorithms and E-stability.

9



knowledge of the number of inflation lags in the policy rule (e.g. L − 1). Some of the
references cited in the introduction may suggest that agents are likely to exclude some
crucial inflation lags from their PLM.

As a first case, it is assumed that agents exclude lagged endogenous variables from their
PLM (“full opacity”). Below we consider more general cases of “opacity” in which agents’
PLM incorporates some but fewer than L− 1 number of lags. The stability properties are
the same for these intermediate cases. The next section analyzes the arguably less likely
case that agents’ PLM has more inflation lags than the policy rule.

Definition Agents are learning with full opacity if they exclude all lagged endogenous
variables from their linear PLM, but possibly include other observables.

Note that the only lags in the model are lagged inflation rates in the policy rule and
private agents have no knowledge of the form (4). Consequently, it is not implausible to
think they would exclude these variables from their forecasting models. Also note that
agents’ PLM under full opacity can be the model-consistent PLM in the model with a
simple IT rule (L = 1), and therefore under full opacity agents forecast as if they are
living under a standard IT regime. With AIT under full opacity, the equilibrium involves
an under-parameterized forecasting model and thus the possible long-term outcome is a
restricted perceptions equilibrium.14

Our interest is the stability of the model’s target steady state, which can be validly
assessed under the simplifying assumption that the random part of government spending
g̃t is identically zero (see Appendix A.5 for more details). This assumption distills the full
opacity PLM down to an intercept term (i.e. agents estimate the long-run mean values
of state variables). We assume agents estimate these long-run mean values using a steady
state learning scheme which is formalized as

set+j = set for all j ≥ 1, and set = set−1 + ωt(st−1 − set−1), (14)

where s = ŷ, π̂, R̂. In this notation expectations set refer to future periods (and not the
current one) formed in period t. When forming set the newest available data point is st−1,
i.e. expectations are formed in the beginning of the current period.

In adaptive learning the gain parameter ωt is usually chosen to exhibit either decreasing
gain, with the sequence {ωt} converging to zero, or constant gain, with the gain parameter
as a small constant ωt = ω ∈ (0, 1]. The E-stability concept used in Remark 1 above
involves ‘Decreasing gain’ learning. Below ‘Constant gain’ learning is mostly used.15The
latter concept is commonly used in applied studies and is necessary if the speed of learning
is an object of interest. See Appendix A.5 for further remarks on learning.

3.1 Temporary Equilibrium and Full Opacity

Under steady state learning with full opacity, agents form expectations π̂et+j = π̂et , ŷ
e
t+j = ŷet

and R̂e
t+j = R̂e

t for j = 1, 2, ... according to (14) at the beginning of time t. Using the equa-
tions (6) and (7) with the form of expectations just given, time-t temporary equilibrium

14See e.g. Evans and Honkapohja (2001) and Branch (2006). The term self-confirming equilibrium is
also used in in the literature, see e.g. Sargent (1999).

15The two notions of stability are closely related, as is evident from the Definition in Section 3.2. With
decreasing gain the parameters converge to a fixed point, whereas with constant gain, convergence is to
a random variable with distribution concentrated around its long-run mean, see Section 7.4 of Evans and
Honkapohja (2001).
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with steady state learning is determined by:
(i) the infinite horizon Phillips curve

π̂t = κŷt +
κβ

1− β
ŷet , (15)

(ii) the aggregate demand function coupled with market clearing,

ŷt = − c∗β

σπ∗ R̂t + ŷet −
c∗β

σπ∗

(
β

1− β
R̂e
t −

β−1

1− β
π̂et

)
(16)

(iii) and the linearized interest rate rule (5). See Appendices A.2 and A.3 for derivation of
(15) and (16).

The system is compactly written

ŷt − Y (ŷet , π̂
e
t , R̂t, R̂

e
t ) = 0,

π̂t − Π(ŷt, ŷ
e
t ) = 0,

R̂t −R(ŷt, π̂t, ..., π̂t+1−L) = 0,

or,
F (X̂t, X̂

e
t , X̂t−1, ..., X̂t−(L−1)) = 0, (17)

where F consists of the aggregate demand function, the Phillips curve and the interest rate
rule. The vector of current state variables is X̂t = (ŷt, π̂t, R̂t)

T while (X̂t−1, ..., X̂t+1−L)
T

contains the lagged endogenous variables. Because the model under study is linearized, F
and the law-of-motion for expectations under learning with full opacity is expressed as:

X̂t = (1− ω)MX̂e
t−1 + (ωM +N1)X̂t−1 +

L−1∑
i=2

NiX̂t−i (18)

X̂e
t = (1− ω)X̂e

t−1 + ωX̂t−1, where (19)

Here X̂t = (ŷt, π̂t, R̂t)
T with the hat denoting a linearized variable and the matrices M ,

N1, ..., NL−1 are given in the Appendix D. 1. Recall also that X̂e
t refers to expected future

values of X̂t and not the current one.

3.2 Stability and Full Opacity

We now consider if AIT can guide actual and expected inflation to the desired target level
when inflation and expected inflation are initially (arbitrarily) close to the target levels. To
gauge whether the central bank’s target equilibrium is “expectationally stable” or “locally
stable” in this sense, we focus on “small gain” results, i.e. whether stability obtains for all
ω sufficiently close to zero.

Definition The steady state is said to be expectationally stable or (locally) stable
under learning if it is a locally stable fixed point of the system (18) - (19) for all 0 ≤
ω < ω̄ for some ω̄ > 0.

Conditions for this can be directly obtained by analyzing (18)-(19) in a standard way
as a system of linear difference equations.16 Intuitively, local instability means that an

16Alternatively, so-called expectational stability (E-stability) techniques based on an associated differ-
ential equation in virtual time can be applied, as we have already done in section 2.3. E.g. see Evans and
Honkapohja (2001).
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arbitrarily small disturbance to agents’ expectations causes the economy to permanently
diverge away from the steady state. Local instability is, therefore, a serious warning signal
about the performance of monetary policy. We find there is local stability of constant gain
learning with full opacity if there is price stickiness and the Taylor Principle is satisfied. In
the case of full price flexibility, local instability obtains under learning even if the Taylor
principle holds.

Proposition 1 Assume that the Taylor principle (8) holds for the policy rule (5).
(i) Assume that there is price stickiness (∞ > κ > 0). Then for small ω, the target steady
state is locally stable under constant gain learning with full opacity for all L.
(ii) Assume that there is full price flexibility (κ→ ∞). For small ω, the target steady state
is locally stable under constant gain learning with full opacity for L ≤ 3 but is unstable for
higher values of L.17

Proofs are given in the Appendices D.1 and D.2. As noted in the proof, the Taylor
Principle is not necessary for the result if L > 4. Proposition 1 (i) and (ii) raise questions
about applicability of the results. As stability is overturned in the limit κ → ∞ to price
flexibility, it is imperative to study whether the AIT rule ensures a stable equilibrium for
empirically plausible values of the gain parameter when there are positive adjustment costs
0 < κ < ∞.18 There is no unambiguously accepted range for the gain parameter but the
range could be something like [0.002, 0.04],19 and so we propose the following relatively
conservative definition of robust stability.

Definition The steady state is said to be robustly stable under learning if it is a locally
stable fixed point of the system (18) and (19) for all 0 < ω ≤ 0.01.

We need to calibrate the system (18) and (19) in order to assess robust stability when
0 < κ <∞. To this end, we use the calibrations reported earlier. For the three calibrations
of γ we compute the (approximate) least upper bound for the gain parameter ω0, so that
values ω > ω0 lead to instability of the target steady state in the calibrated model. In
Appendix C.2, we repeat this analysis for other values of the price and output reaction
coefficients in the AIT rule (4), and for a case in which the Phillips curve is especially flat
(κ is very small). The basic result is:

Remark 2 Under full opacity the calibrated model with sticky prices is not robustly stable
for higher values of L. Robustness, as measured by ω0, diminishes with increased window
length L.

γ 42 128.21 350
ω0 (IT ) 0.04242 0.04545 0.05316
ω0 (PLT ) 0.00909 0.00582 0.00336
ω0 (AIT with L = 6) 0.00281 0.00417 0.00513
ω0 (AIT with L = 20) 0.00022 0.00047 0.00087
ω0 (AIT with L = 32) 0.00008 0.00019 0.00038

17In contrast to Proposition 1(ii), Honkapohja and Mitra (2020) find that the target steady state is
locally stable under learning with opacity and PLT in the flexible price version of the model studied here.

18The idea of using the range of values for gain parameter as a criterion for robustness was first suggested
in Evans and Honkapohja (2009b).

19See e.g. Orphanides and Williams (2005), Branch and Evans (2006), Milani (2007) and Eusepi, Gian-
noni and Preston (2018).
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Table I: Least upper bounds in AIT, IT and PLT

Table I demonstrates that while the IT rule is robustly stable, the AIT and PLT rules
are not robustly stable. The latter two are fairly similar in terms of robustness if L is
not too high (e.g. L = 6 is in the range of optimal averaging windows in Amano et al.
(2020)). However, for higher values of L such as L = 20 or L = 32, which correspond to
5-year and 8-year averages, respectively, we observe instability even for values of ω that are
implausibly low. Finally, to the extent that price rigidity appears to stabilize expectations,
AIT might appear to function better when estimates of the Phillips curve slope are fairly
small. However, this is a bad sign for AIT if high inflation tends to be associated with a
steeper Phillips curve when inflation is away from the ZLB.

Table 1 also reveals an important discontinuity: stability outcomes deteriorate as L
increases, but stability concerns are more benign when the averaging window is infinite
(i.e., under PLT). In fact, PLT is not susceptible to the same issues we have observed
thus far under AIT. First, communication about PLT can dramatically improve stability
outcomes – even if agents do not know the functional form of the interest rate rule – as
documented under analogous conditions of learning by Honkapohja and Mitra (2020).20

On the other hand, transparency about AIT may not be consistent with expectational
stability if L is finite and long, as discussed earlier. Second, AIT under full opacity leads
to instability for any value of the gain parameter when prices are fully flexible, whereas the
target equilibrium remains stable under PLT with full opacity when prices are fully flexible
as shown by Honkapohja and Mitra (2020).

The instability problem under AIT reflects a tension between stabilizing a finite moving
average of inflation and stabilizing long-run inflation expectations which are influenced by
data. A finite window lets bygones be bygones; the policymaker aims for above-target in-
flation following a period of low inflation, but then it eventually drops the old low inflation
data from their measure of average inflation and aims to undershoot the target to compen-
sate for the overshooting. In the model with flexible prices, full opacity and gain equal to
zero (ω = 0), this pattern of under- and over-shooting as bygones become bygones implies a
deterministic cycle for equilibrium inflation: πt = πt−L.

21 Thus, in the absence of learning
(ω = 0), inflation never returns to target following an initial shock. Adding learning with
opacity (ω > 0) and flexible prices only makes the issue worse; agents who observe the
pattern of over- and under-shooting end up confusing some part of the transitory rise in
inflation for higher permanent inflation and raise long-run expectations accordingly.

This de-anchoring of expectations from the target exacerbates the inflation overshooting
of the target relative to the case of rational agents, and leads to oscillations in temporary
equilibrium inflation that diverge to positive or negative infinity. Price stickiness helps to
stabilize the economy, but does not eliminate the oscillations in inflation, and for given
ω > 0, instability is more likely to obtain if L is very large. Under PLT, on the other hand,
bygones are not bygones and consequently the pattern of over- and under- shooting is not
observed under PLT with full opacity and small gain. In the special case of no learning with
full opacity (ω = 0), equilibrium inflation converges monotonically to the target following
an initial shock to the economy. Increasing the gain moderately under PLT does not give
rise to oscillations that are difficult for agents with opacity to correctly forecast.

20It may be recalled that according to Honkapohja and Mitra (2020) performance of PLT is much
improved if private agents use more information about the policy framework.

21See Appendix C.4 for derivations in this paragraph.
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Our instability concern is not limited to the model with Rotemberg pricing frictions.
The result in Proposition 1 applies to a model with Calvo pricing friction. Similar robust
stability concerns emerge in a calibrated version of that model for the case of AIT with
large L (and robust stability concerns are somewhat mitigated under PLT–see Appendix
C.3).

Remark 3: The implications of AIT policy (5) in the Calvo NK model, e.g. Preston
(2005), are very similar to those in Proposition 1.

Looking at the results so far it is apparent that a fully opaque average inflation targeting
framework can pose serious risks to economic stability. In principle, communication about
the averaging window may mitigate concerns about robust stability, as a transparent AIT
framework with moderately short averaging window, discussed in Section 2.3, does not pose
the same stability risks.22 Similar concerns emerge if agents include some but not all of the
relevant lags of inflation in their forecasting models, as we show next.

3.3 Opacity: AR(1) case

A natural alternative to the full opacity PLM (which excludes all lags of inflation) is the
following PLM:

set+j = as,t + bs,tπ̂
e
t+j−1, (20)

where s = ŷ, π̂, R̂. The PLM (20) is similar to PLMs studied in Hommes and Zhu (2014),
and it encodes agents’ belief that inflation is serially correlated. As noted previously, we
say that agents have “opacity” but not “full opacity” if they include one lag of inflation in
their PLM. We start with the case in which agents include only a single lag of inflation in
their PLM, and with some abuse of terminology, we refer to this is as the “AR(1)” case.
The next section considers other underparameterized forecasting models with more than
one but less than L− 1 lags.

Definition Agents are learning with opacity if they include at least one but less than
L− 1 lags of inflation in their linear PLM.

As with full opacity, the PLM (20) is under-parameterized relative to the MSV REE
law of motion, and therefore agents cannot learn an REE under opacity. However, agents’
beliefs may nonetheless converge to a self-confirming restricted perceptions equilibrium
(RPE), (as, bs), where (as, bs) satisfy the following least squares orthogonality restriction:

Eπ̂t−1 (st − as − bsπ̂t−1) = E(πt−1 − as) (st − as − bsπ̂t−1) = 0, (21)

if such an RPE exists. Hommes and Zhu (2014) and Hommes et al. (2023) use a similar
orthogonality restriction to identify self-confirming equilibria of univariate and multivariate
models with AR(1) PLMs. Intuitively, (21) ensures that agents’ have self-confirming beliefs
about the mean and the 1st auto-correlation in the data, and hence cannot easily detect
the fact that their PLM is misspecified.

We now consider stability of learning in the AR(1) case of opacity. To examine the
possibility of stability in a parsimonious fashion, we assume there exists a bs which satisfies

22Appendix C.2 demonstrates that the calibrated model is robustly stable under learning with trans-
parency for shorter averaging windows. When conducting the robust stability analysis under transparency,
we first verify E-stability and then fix the estimates of the AR coefficients in the PLM to their RE values
and let agents estimate the intercept term in their PLM only.
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(21), and that agents set bs,t = bs and estimate as,t using the following constant-gain
learning algorithm:23

as,t = as,t−1 + ω(st−1 − bsπ̂t−2 − as,t−1). (22)

Expectations, set+j, are formed by substituting (22) and bs,t = bs into (20), and temporary
equilibrium is given by (5)-(7). In this setting, we say that the target steady state is stable
under learning with opacity if agents learn an RPE near the target (i.e. an RPE for which
as = 0 for s = ŷ, π̂, R̂). As it turns out, the target steady state is stable under learning if
prices are sufficiently sticky, but is unstable under learning if prices are flexible.

Proposition 2 Assume that the Taylor principle (8) holds for the policy rule (5).
(i) Assume that there is price stickiness (∞ > κ > 0). For small ω and high γ, the target
steady state is locally stable under constant gain learning with AR(1) PLM (20) for all L.
(ii) Assume that there is full price flexibility (κ → ∞). For small ω, the target steady
state is locally stable under constant gain learning with AR(1) PLM (20) for L ≤ 3 but is
unstable for many higher values of L.

Comparing Proposition 1(i) (Proposition 1(ii)) to Proposition 2(i) (Proposition 2(ii))
it is evident that AIT poses similar risks to stability under both opacity and full opacity.
Badly under-parameterized PLMs, which could arise due to a lack of transparency about
the policy framework, or because households do not systematically condition their inflation
expectations on a sufficiently large number of lags of the quarterly inflation rate, can
undermine the efficacy of AIT. As in Proposition 1, the Taylor Principle is not a necessary
condition for the result in Proposition 2 (see Appendix D).

Of course there are many other under-parameterized PLMs one may consider, particu-
larly if L is large. In the next section we provide results for these cases.

3.4 Other Underparameterized Lag Structures

It is now assumed that the lag structure in the PLM has N − 1 lags on inflation , where
3 ≤ N < L. Temporary equilibrium is as before, see (10). In this setup the mapping from
PLM to ALM has to incorporate the feature that the PLM is a V AR(N − 1) process while
the resulting ALM is V AR(L− 1). It is necessary to project the ALM into the subspace of
V AR(N − 1) processes to obtain the best linear predictor in this class. The RPE is a fixed
point of the map from the PLM to the projected ALM. The details are in Appendix B.

In the sticky price setup it is not possible to obtain analytical results in the cases
1 < N − 1 < L − 1, so we revert to numerical analysis. We use the basic calibration
described above. According to the numerical results, the stability result of the AR(1) case
in Proposition 2 (i) generalizes in the sticky price economy:

Remark 4 The result of Proposition 2 (i) continues to hold in the sticky price economy
with underparameterized learning.

Table II illustrates robustness of stability in intercept learning for L = 8, when agents use
the RPE values for AR parameters in the PLM. (Appendix B provides the technical details
for the computation.) Table II gives (approximate) the least upper bounds ω0 for stability.

23Note that we assume that g̃t is a small i.i.d shock to ensure a well-defined bs, and it can be shown that
as = 0 (i.e. the target steady state is a fixed point of the system).
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N − 1 0 (Full Op.) 1 2 3 4 5 6 L− 1
ω0 0.00258 0.00268 0.00327 0.00432 0.00631 0.01024 0.01979 0.02383

Table II: Least upper bound for stability of the gain parameter in underparameterized
constant gain learning (L = 8).

In the flexible price case theoretical results can be obtained and the outcome is analogous
to Proposition 2 part (ii), so the RPE is unstable under learning when agents’ PLM is
underparameterized.

Proposition 3 Assume that the Taylor principle (8) holds for the policy rule (5). In the
flexible price economy with underparameterized learning there is no stationary learning-
stable RPE when N = 3, ..., L− 1.

The proof of Proposition 3 is in Appendix D.
Non-existence of a stationary RPE makes it difficult to numerically compute a good

approximation to the RPE. If the RPE values of the PLM parameters are not known,
then it can be hard to find initial conditions for a learning process that are in a small
neighborhood of the RPE. Appendix B contains further discussion.

4 Can Agents Learn the Length of the Data Window

of AIT Rule?

The preceding section showed how difficulties with stability arise if the data window length
N in agents’ PLM is shorter than the window length L of the policy rule. In the opposite
case, where agents’ data window has length R > L, it turns out that, given other standard
assumptions of the policy rule parameters, private agents can learn the value of L if they
start with the PLM with a longer data window than the window in the AIT rule.

The general form of the model is

X̃R,t = (X̂T
t , ..., X̂

T
t−(R−2))

T (23)

X̂t = K +
∑∞

i=1
βiMX̂e

t,t+i +
∑L−1

j=1
NjX̂t−j.

As before, the lagged term
∑L−1

j=1 NjX̂t−j incorporates lags of endogenous variables which
in the current model consist of lagged inflation rates of the AIT rule. The PLM allows for
overparameterization (R > L)

X̂t = A0 +
∑R−1

j=1
AjX̂t−j. (24)

The model with overparameterization is analyzed in detail in Appendix D.5. It is shown
there that the MSV solution must fulfill the following lemma:

Lemma 4 For any MSV REE solution of the model (23) the PLM (24) satisfies the equa-
tions

AL = ... = AR−1 = 0

in both sticky-price and flexible-price models.
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In other words, in the REE the overparameterized PLM has zero coefficients in the lags
that are not included in the correctly specified PLM. The proof is in Appendix D.5.

It should be noted that the REE with overparameterized PLM may not be unique as
the equations for determining the values of the PLM parameters are nonlinear and can
have multiple solutions.24 To proceed, a selection criterion among the MSV solutions must
be used and, as before, we select the MSV solution that is locally determinate in the
further analysis. Convergence of learning to MSV solution is then considered by requiring
E-stability of the solution of interest.

In this kind of situation it is useful to make the distinction between weak and strong
E-stability, see Evans and Honkapohja (2001), Chapter 9, sections 3-5. Weak E-stability
refers to E-stability of REE when agents’ PLM has the same functional form as the REE
of interest. Strong E-stability refers to E-stability of REE when agents’ PLM is overpa-
rameterized relative to the REE of interest. Using simple models, Evans and Honkapohja
(2001) show that conditions for strong E-stability add a further requirement to the weak
E-stability conditions.

At this stage it is necessary to revert to numerical analysis as the equations for de-
termining the MSV solution of interest and the analysis of its stability under learning do
not yield analytically interpretable forms of stability conditions. The numerical analysis
employs the benchmark calibrations described earlier. Figure IA (top panel) uses the stan-
dard calibration also for the policy parameters ψp = 1.5 and ψy = 0.125 and uses the grid
L ∈ [0, 40] for the averaging window of the policy rule and the grid for the PLM window
R = L + Q with Q ∈ [0, 10]. The shaded area indicates strong E-stability. It is seen that
there are differences in stability areas for different values of the price stickiness parameter
γ. Figure IB (bottom panel) uses a policy rule with ψp = 2 and ψy = 0.125, so the rule has
a more aggressive response with respect to inflation.

FIGURES IA AND IB ABOUT HERE

The figures illustrate the following result, which is a consequence of Lemma 4:

Proposition 5 Consider the NK model with policy rule (5) and assume that the Taylor
principle (8) holds at a locally determinate MSV solution. Then weak E-stability of the
MSV solution is a necessary condition for the solution to be locally E-stable with overpa-
rameterized PLM (strong E-stability). The same result holds in the flexible price case.

In an earlier section, we showed that the REE is weakly E-unstable if L is too large.
Proposition 5 therefore informs us that agents cannot learn the window or REE with trans-
parency or over-parameterized PLM if the true averaging window is too long. However,
agents can learn the window length and target REE with over-parameterized PLM, pro-
vided that L is sufficiently small and the parameters of the rule are set so that the target
equilibrium is (locally) determinate and strongly E-stable:

Corollary 6 If the MSV REE of the economy is strongly E-stable, private agents can learn
the correct data window length in the policy rule if they have more inflation lags in their
PLM than the number of lags in the AIT policy rule.

24Evans and Honkapohja (1992) and Chapter 9 of Evans and Honkapohja (2001) discuss the set of
overparameterized solutions to linear scalar RE models with lagged endogenous variables.
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Suppose the central bank targets a simple moving average of inflation as in the bench-
mark analysis and the economy is strongly E-stable. If the central bank does not commu-
nicate L, agents can try to learn the averaging window by estimating a V AR(R−1) model
for inflation, output and the interest rate. If R < L then agents will not learn the true
window, and expectations will likely diverge from the target as shown earlier. However, if
R ≥ L, agents will learn the window if the estimates of the coefficients on extraneous lags
of the endogenous variables go to zero asymptotically.

Figures IA and IB show numerically that agents may learn the window, provided R ≥ L.
The MSV solution is strongly E-stable whenever it is weakly E-stable. However, it is
also shown that the MSV solution may not be E-stable if the averaging window is too
long. Hence, lengthening the averaging window can pose risks to instability when agents
forecast in a sophisticated manner and try to learn the averaging window by estimating an
overparameterized PLM recursively. The risk of instability under long averaging windows
therefore emerges under both opacity and the MSV/overparameterized PLM cases.

This above approach mimics the “general-to-specific t rule” for the choice of lag length
in time series analysis of AR processes. There are also more sophisticated approaches to
selecting the number of lags of a VAR model: use of AIC or BIC information criteria for
model selection would be another approach. See e.g. Hayashi (2000), Section 6.4 for these
rules and criteria. For reasons of space we refrain from the analysis of the latter criteria.

5 Escape From the ZLB Regime With AIT?

One key argument for introducing AIT policy in place of IT has been its potential in
providing a framework that facilitates return from the regime of very low interest rates to a
normal regime with the economy operating near the inflation target equilibrium. From the
outset, we noted that AIT under full opacity is not a robust mechanism for escape from
the ZLB; even if the economy escapes the ZLB regime under AIT with full opacity, the
instability or non-robust stability of the target equilibrium implies that inflation may never
converge to the target. Further, when the ZLB is binding, the dynamics under AIT with
full opacity are identical to the dynamics under IT, and so the results from earlier analyses
which cast doubt on the efficacy of IT at the ZLB can be applied.25 On the other hand,
the target steady state is more stable under learning with transparency. Can a transparent
AIT rule bring the economy back to the target steady state from the ZLB regime?

We consider the issue of escaping the ZLB under AIT by using a stochastic version of
the nonlinear model with (4) and agents’ PLM taking a form similar to (11)26

X̃t = ÃtX̃t−1 + Ã0,t + B̃tg̃t.

For this section, agents are assumed to learn about all parameters in their learning rule. At
the end of each period t, agents update their estimates, ξt = (Ã0,t, Ãt, B̃t)

T , using all data
available at the end of the period using a standard constant gain least-squares algorithm:

ξt = ξt−1 + ωS−1
t zt

(
X̃t − ξTt−1zt

)T
,

St = St−1 + ω(ztz
′
t − St−1),

25See Evans, Guse and Honkapohja (2008) and Benhabib et al. (2014).
26In these simulations we include a small shock (i.e. g̃t ̸= 0) to mitigate multicollinearity issues which

arise when agents jointly estimate the intercept and lagged variable coefficients in the non-stochastic version
of the model. See e.g. Evans and Honkapohja (2001), Chapter 7 for a review of related issues.
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where zt = (1, X̃T
t−1, g̃t)

T .27 Agents make forecasts using Ã0,t, Ãt, B̃t in period t+1. Agents
are assumed to understand that they live in the nonlinear model, and so xet+j = exp(x̂et,t+j),
where x = y,R, π, hatted variables are the logs of variables and also the elements of stacked
vector, X̃t, and x

e
t+j is the time-t expectation of xt+j.

As a first example consider the case where the economy is initially very near the low
steady state (yLow, πLow) with binding ZLB, such that πe0 = π(0) = π(−1) = . . . = π(−L+
1) ≈ πLow, y

e
0 = y0 ≈ yLow, R0 = Re

0 ≈ 1, where ye0, π
e
0, and R

e
0 denote the initial expected

long-run levels of y, π, and R, respectively.28 We assume Ã0 is a zero matrix and Ã0,0

is set in accordance with Re
0, π

e
0, and y

e
0. Our assumption about Ã0 may be a reasonable

description of beliefs at the beginning of a transition from a standard IT policy regime to
a well-communicated AIT regime. The basic calibration is the same as earlier in Section 3
with γ = 128.21, ω = 0.005, and L = 6.29 The economy escapes the liquidity trap in this
case, as shown by the blue curves in Figure II.

Figure II A-C HERE

AIT with learning under transparency is also compared with the IT policy framework in
Figure II. From the figure, we see that AIT generates makeup inflation and brings inflation
to the level of the target much faster than under IT, though the makeup inflation comes
at the expense of greater output volatility. In both cases, the economy converges to the
target steady state. However, this finding is not robust; when we vary L and ω, and repeat
the same simulation from the low steady state, we observe convergence to target under IT
for much higher values of the gain parameter than under a transparent AIT regime (see
Table III). Deflationary spirals take place in simulations that do not converge to the target
steady state.30 Table III also gives an example of non-robust stability of learning in the
case of transparent AIT.

L 1 (IT) 4 6 12 20
ω0 0.05629 0.01774 0.01138 0.00584 0.00362

Table III: Least upper bounds ω0 for stability

Whether AIT under transparency initiates escape from the liquidity trap depends also
on assumptions about initial expectations and economic conditions. The domain of es-
cape31 from the liquidity trap for different initial conditions πe0 ≈ π(0) = π(−1) = . . . =
π(−L + 1), ye0 ≈ y0, and R0 = Re

0 ≈ 1, with L = 6 and low gain parameter, ω = .002, is
shown below in Figure III.

27In simulations, agents are assumed to know that lags of output and the interest rate do not matter
in equilibrium. Suitable modifications to the learning algorithm are made to impose this assumption. We
assume S−1 is proportional to the identity matrix in numerical simulations.

28In fact to facilitate the numerics we set R0 and Re0 slightly above 1.
29Earlier sections and Appendix C.2 analysis indicates that lower values of L may lead to better stability

outcomes than higher values. We choose a value of L that is in the range of optimal averaging windows
studied by Amano et al. (2020).

30For the numerical Table III simulations, we conclude that the economy diverges from the target if the
the economy does not return to the steady state within 50,000 periods.

31Domain of escape from the liquidity trap is the set of initial conditions near the low steady state that
lead to convergence to target steady state. It is part of the domain of attraction of (π∗, y∗).

19



Figure III HERE

It is seen that there is a domain of escape from the liquidity trap, but it covers only a small
area around the low steady state. In particular, if ye0 is below yLow and πe0 is approximately
at level πLow, the economy does not escape from the liquidity trap.32 By this measure both
AIT and IT are less robust than PLT under similar information settings (see Honkapohja
and Mitra (2020) for the corresponding results under PLT, and Appendix C.1 for the
domain of escape under IT).

We did not find the basic results in this section to be sensitive to initial values of the
lag coefficients of the PLM parameters. Figure A.2 in the Appendix presents the domain of
escape when agents’ initial beliefs about the lag coefficients, Ã, coincide with the coefficients
of the unique, stable MSV solution of the linearized model (i.e. we impose Ã0 = Ā0, where
Ā0 is from the model linearized around the target steady state). Under this assumption
about initial beliefs, agents understand that the policymaker aims for makeup inflation
following a ZLB event, and yet still the performance of AIT is not significantly improved.

Our analysis shows that the performance of AIT policy in the nonlinear model with the
ZLB is sensitive to the speed of learning, just as the success of AIT under transparency
near the target steady state hinges on the magnitude of the gain parameter. Further, AIT
does not clearly outperform IT when expectations are near the low steady state–even if
agents understand the basic structure of AIT and the implication of make-up inflation–and
it very clearly underperforms a credible PLT regime (see Honkapohja and Mitra (2020)).

6 Asymmetric AIT

The previous sections focus on rules that respond symmetrically to positive and negative
deviations of average inflation from the target. It was shown that the central bank may
have to commit to a credible, transparent and sufficiently small averaging window, or risk
losing control of inflation under a symmetric rule. Such commitment may be undesirable to
the policymaker depending on their preferences. For example, opacity about the averaging
window can make it difficult for private sector agents to attribute a persistent gap between
current inflation and the target level to monetary policy mistakes. Moreover, the assump-
tion of symmetry might ultimately prove incompatible with the Federal Reserve’s evolving
strategy. To overcome these concerns, alternative asymmetric rules have been proposed in
the literature.33 We briefly consider performance of the following asymmetric AIT rule:

Rt = 1 +max[R̄− 1 + ψp[Pt − 1] + ψy[
yt − y∗

y∗
], 0], where (25)

Pt =

{ L−1∏
i=0

πt−i

π∗ if
L∏
i=1

πt−i < (π)L,

πt
π∗ if

L∏
i=1

πt−i ≥ (π)L.

(26)

32The figure also includes a line indicating the boundary of the ZLB region.
33The asymmetric rule we study here responds to an accumulated shortfall of inflation (over a finite

horizon), and therefore resembles features of the temporary price level targeting rules and threshold rules
studied in, e.g., Bernanke, Kiley and Roberts (2019).
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This policy targets average inflation (i.e. the product of gross inflation over the last L
periods) when average inflation is less than (π)L and targets current inflation otherwise.
Note that under the asymmetric rule the policymaker aims to overshoot the target, but
does not aim to undershoot the target. More generally, the rule is a special case of a policy
where the averaging window is state-dependent and extended when inflation is running
persistently low.

If π < π∗, then the asymmetric rule is a simple IT rule when average inflation is
sufficiently near the level of the target. As a result, the asymmetric rule inherits the
desirable local stability properties of the IT rule. On the other hand, the asymmetric rule
is identical to the symmetric AIT rule near the target steady state if π > π∗. Consequently,
an asymmetric rule that targets average inflation when inflation is near the target poses
risks to expectational stability.

Unsurprisingly, the asymmetric rule can fail to guide inflation back to target following a
simulated liquidity trap if π > π∗. In our calibrated full non-linear model, the asymmetric
rule gives rise to persistent oscillations in inflation following a period of make-up inflation
when π = 1.006 > π∗ = 1.005 (i.e. the annual inflation target is 2% but the central bank
targets average inflation when inflation is persistently below about 2.4%).34 Needless to say,
an average inflation targeting central bank would abandon it’s strategy before tolerating
this undying pattern of over- and under-shooting the 2% target. The following remark
summarizes these insights.

Remark 5 Assume that the Taylor principle (8) holds for the asymmetric rule (25)-(26).
(i) If π < π∗, the target steady state of the model is locally robustly stable under learning
with full opacity for all L and γ ≥ 0.
(ii) If π > π∗, the target steady state of the model is not robustly stable under learning
with full opacity for any L ≥ 4, and is locally unstable under full opacity if prices are fully
flexible.

Remark 5 predicts that a fully opaque asymmetric rule will do a better job of bringing the
economy out of the ZLB regime and back to the target steady state than a fully opaque
symmetric rule – provided that the central bank focuses on guiding current inflation back
to target when inflation is near or above the target.

For technical reasons, we exclude the case π = π∗ in Remark 5, as the setup involves
a dynamical system with regime switching and the fixed point on the boundary of two
regimes. Various possibilities can arise in simulations and here are pertinent observations.
π = π∗ ensures that the policymaker does not aim to undershoot the target when average
inflation is at or above the target level, and hence on the basis of simulations we conjecture
that the results under π = π∗ resemble those under π < π∗. Figure IV illustrates the result
from Remark 5 for the case π < π∗ in the full non-linear model, assuming agents update
beliefs using the non-linear version of (19). As before, we assume the economy is initially
near the deflation steady state (i.e. πe0 ≈ π0 = π−1 = ... = π−L+1 ≈ πLow, y

e
0 ≈ y0 ≈ yLow,

Re
0 ≈ R0 ≈ 1), and we set L = 6, ω = 0.015, and π = 1.001.

Figure IV: ABOUT HERE

Figure IV displays results in terms of inflation for the asymmetric rule under full opacity
(black line). For comparison the results under a symmetric IT rule (red line) and the

34Details are available on request.
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benchmark symmetric AIT rule (4) under full opacity (orange line) are also shown in the
figure. It is assumed that under both the asymmetric and symmetric AIT rules, makeup
inflation with overshooting is observed after an initial period of low inflation, but dynamics
under the rules differ when the downward adjustment starts. Under asymmetric AIT,
overshooting of makeup inflation is very moderate and inflation does not undershoot the
inflation target and, together with the interest rate, inflation gradually falls back to the
target steady state. With the symmetric rule average inflation strongly overshoots the
target and the policymaker abruptly raises the interest rate which makes both inflation
and the interest rate undershoot the target and the dynamics become unstable.35

These results suggest that full opacity is no longer a concern if the policymaker uses an
asymmetric rule of the form (25)-(26) that aims for overshooting, but not for undershooting
of the target. Thus, while Hoffman et al. (2022) find that German households understand
the implications of an asymmetric AIT strategy, our results suggest that asymmetric strate-
gies can still perform well if expectations are not responsive to announcements about AIT,
as Coibion et al. (2023) find in the case of U.S. households. Additional research on the
performance of asymmetric makeup policy rules under adaptive learning would be worth
while.

7 Variations on a Theme: Weighted Averages

We now consider whether the use of weighted measures of average inflation that discount
past inflation relative to current inflation in computing average inflation can improve sta-
bility properties of AIT policy. We consider two natural deviations from the finite, simple
moving averaging schemes studied above.

7.1 Exponentially Declining Weights

First, we introduce exponentially declining weights over the finite past horizon when com-
puting average inflation for the interest rate rule. Thus the rule (4) is adjusted to

Rt ≡ 1 + max[R̄− 1 + ψp

[
L−1∑
i=0

µi(
πt−i
π∗ − 1)

]
+ ψy[

yt
y∗

− 1], 0], (27)

where 0 < µ < 1. The length of the past horizon is L − 1 as before. The framework
is otherwise unchanged: the aggregate demand function (16), the Phillips curve (15) and
learning with full opacity. The economy is stable under learning with full opacity and the
rule (27) even when there is full price flexibility.

Proposition 7 Assume that the Taylor principle (8) holds for the policy rule (27) for
0 < µ < 1. For small ω, the target steady state is locally stable under constant gain
learning with full opacity for all L.

Robustness of stability in Proposition 7 (ii) is examined using the calibrated model
discussed in Section 3. Table IV repeats the analysis in Table I for different values of the
discount parameter µ and under the assumption that L = 6.

35As noted above, the setup is sensitive to specific calibration details. For example, setting ω to a
sufficiently small value can imply convergence to the target steady state under the symmetric rule with
full opacity.
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γ 42 128.21 350
ω0 (µ = 1) 0.00281 0.00417 0.00513
ω0 (µ = .9) 0.00569 0.00571 0.00615
ω0 (µ = .7) 0.01214 0.00936 0.00902
ω0 (µ = .5) 0.02059 0.01533 0.01424

Table IV: Least upper bounds ω0 for instability

It is seen that discounting old data in the AIT rule contributes robustness of stability
but a significant degree of discounting is needed. We conclude that this specification only
modestly improves stability outcomes.

7.2 Exponential Moving Average Rule

A different way to discount old data is to assume that an exponential moving average
specification is used in the interest rate rule. Consider an interest rate rule that responds
to an exponential moving average of inflation (exp MA):

Rt = 1 +max[R̄− 1 + ψp

(
πwc
t (πcbt )

1−wc

π∗ − 1

)
, 0] (28)

πcbt = πwc
t−1(π

cb
t−1)

1−wc , (29)

where 0 < wc < 1.36 Intuitively, wc determines an implicit averaging window, with higher
values of wc corresponding to shorter windows. The framework is otherwise unchanged:
the aggregate demand function (16), the Phillips curve (15) and steady state learning.

The dynamic model is now given by

F (Xt, X
e
t , π

cb
t ) = 0, (30)

where F consists of the Phillips curve, the aggregate demand function and interest rate
rule (28). The vector of current state variables is Xt = (yt, πt, Rt)

T . The law of motion
for Xe

t is the same as before, and the law of motion for πcbt is given by (29). Linearizing
around the target steady state we obtain the system

X̂t = (−DFx)−1(DFxeX̂
e
t +DFcbπ̂

cb
t ) (31)

≡ MX̂e
t +Ncbπ̂

cb
t , (32)

where M and Ncb are given in the appendix, and X̂ again collects linearized y, π,R. In a
model with sticky prices and an exponential moving average rule, the Taylor Principle is
now sufficient for stability under constant gain learning with full opacity:

Proposition 8 Assume that the Taylor principle (8) holds for the exponential moving
average rule (28)-(29) and 0 < wc < 1.
(i) Assume that there is price stickiness (∞ > κ > 0). For small ω, the target steady state
is locally stable under constant gain learning with full opacity.

(ii) Assume full price flexibility (κ→ ∞) and ψp > max[
π∗( ω

wc
)(1−wc)

(1−β)β , β−1π∗]. For small ω,
the target steady state is locally stable under constant gain learning with full opacity.

36Budianto et al. (2023) study AIT with exp MA in a model with bounded rationality. Earlier, determi-
nacy of REE under an exponential moving average rule was studied by Woodford (2003) (see Proposition
2.7).
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When there is full price flexibility, however, the stability conditions depend on wc and
the ratio of ω to wc, which implies that the situation can ultimately be more stringent
than the preceding proposition indicates. If ω and wc are both relatively small (i.e. the
averaging window is relatively long) and ω ≈ wc, then the condition for stability is far
more demanding than the Taylor Principle. Eusepi and Preston (2018), section 4, study
a related model that can be recovered here by setting ω = wc, and they obtain similar
results. The fact that stability may depend on the private sector gain parameter suggests
that the opaque exponential moving average formulation of average inflation targeting can
be a risky alternative.

In Appendix C.5, it is shown that the REE under the exp MA rule is E-stable if agents
embrace a PLM that includes a single lag of the interest rate. In these cases, E-stability
means that agents can learn the averaging window, wc. Furthermore, the target equilibrium
is robustly stable under learning when agents have a PLM that includes a lag of the interest
rate.

8 Concluding Remarks

Recent monetary policy challenges sparked interest in alternative policy frameworks, in-
cluding AIT which the Federal Reserve adopted in 2020. The Fed has not communicated
some details about the structure of the new policy, most notably the definition of average
inflation itself. This paper explored some implications of imperfect knowledge in an AIT
regime with significant history dependence.

We have focused on the stability criterion, i.e., convergence of the economy, including
expectations, to the central bank’s targeted equilibrium in the new policy regime. Our
results indicate that implementation details of AIT should be carefully considered as there
can be concerns about stability of the economy. AIT policy practiced under opacity of its
details can fail to anchor expectations around the target steady state if prices are flexible or
the speed of learning is anything but very slow. Moreover, an AIT policy practiced under
opacity will typically fail to instigate an escape from a liquidity trap.

Silence about the details of its AIT regime, including the definition of average inflation
can be problematic. Our research suggests that being opaque can result in instability of
the economy. The instability result manifests the difficulty of stabilizing a simple finite
moving of average inflation following a shock–which requires over- and under-shooting the
long-run inflation target level–and anchoring expectations of agents who cannot correctly
forecast these complicated implications of AIT. Robustness of the economy can be enhanced
if certain limited aspects of the policy system are communicated to the private economy.
In the model, AIT can anchor expectations if agents know the true averaging window or
simply believe that the window is very long. The transparency about the policy regime
required to induce these beliefs is only partial, as it is about the number of lags in the
policy rule and knowledge of the numerical values of the rule parameters is not required
for stability. If agents incorporate this information about the history-dependence of policy
into their learning, then the target steady state is fairly robustly stable, and AIT can even
succeed in guiding the economy out of a liquidity trap.

However, transparency is not always sufficient, as the adoption of an especially long
averaging window precludes existence of a learning-stable equilibrium. In contrast, asym-
metric strategies that aim for overshooting of the inflation target following a period of low
inflation, but not undershooting of the target after a period of high inflation, can stabilize
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expectations under learning even with opacity about the policy rule and averaging window.
Under such an asymmetric strategy, the length of the averaging window is not relevant for
stability. An asymmetric approach prevents a difficult-to-forecast pattern of inflation over-
shooting followed by under-shooting the inflation target from emerging in equilibrium, and
therefore helps anchor beliefs asymptotically.

There is plenty of room for future research. As a starting point for our analysis, we
assumed that AIT is either conducted under full or partial opacity and, for comparison,
in an environment in which agents fully incorporate knowledge of the structure of policy
into learning. We highlight potential concerns about an opaque framework, but limited
transparency can be beneficial in different ways that we did not consider here (e.g., see Faust
and Svensson (2001), Geraats (2002), Jensen (2002), Jia and Wu (2023)). For instance,
deviations from the rule may be called for in response to surprise structural shocks. In
general, we neglected possible rationales for implementing an opaque AIT regime. However,
this paper’s findings also suggest benefits of adopting an opaque asymmetric rule. The
performance of asymmetric rules, including switching rules, under imperfect knowledge
is an area worth further exploring. Imperfect knowledge with learning may also have
implications for optimal policy that have not yet been explored. Additionally, the analysis
focused on the effects of an unanticipated implementation of AIT, and we have not studied
anticipated transitions to AIT under conditions of imperfect knowledge.

Finally, our analysis about the success of AIT in stabilizing expectations assumed the
presence of price adjustment costs à la Rotemberg (1982) in the economy. For brevity,
we largely abstracted from alternative models of price stickiness, such as the widely used
Calvo (1983) model of infrequent price-setting. The basic properties of the AIT in the
Calvo model are given in Remark 3 and Appendix C.3. Further aspects of the comparison
could be explored.

AALTO UNIVERSITY SCHOOL OF BUSINESS
BANK OF FINLAND
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Appendices

A The NK Model

The economic agents are household-producers, so the objective for agent s is to maximize
expected, discounted isoelastic cum quadratic utility subject to a standard flow budget
constraint (in real terms) over the infinite horizon. Households produce differentiated
goods and s also denotes the product variety produced by s. The utility function for each
period is standard except there is also disutility from changing prices:

Ut,s =
c1−σ1t,s

1− σ1
+

χ

1− σ2

(
Mt−1,s

Pt

)1−σ2
−
h1+εt,s

1 + ε
− γ

2

(
Pt,s
Pt−1,s

− 1

)2

(33)

and the flow budget constraint is

st. ct,s +mt,s + bt,s +Υt,s = mt−1,sπ
−1
t +Rt−1π

−1
t bt−1,s +

Pt,s
Pt

yt,s. (34)

Here yt,s and ct,s are production and consumption of agent s in period t. Mt−1,s is the
nominal balances in the beginning of the period and ht,s is labor supply of agent s in
period t. Pt,s is the price of product variety s while Pt is the aggregate price level. mt,s,
bt,s denote end of period real money balances and bond holdings of agent s. Υt,s is the
lump-sum tax of agent s.

The final term in the utility function parameterizes the cost of adjusting prices in the
spirit of Rotemberg (1982). The household decision problem is also subject to the usual
“no Ponzi game” (NPG) condition. In the maximization of utility the expectations E0,s(.)
are in general subjective and may not be rational.

Production function for good s is standard

yt,s = hαt,s, where 0 < α < 1. (35)

There is no capital. Output is differentiated and firms operate under monopolistic compe-
tition. Each firm faces a downward-sloping demand curve

Pt,s =

(
yt,s
yt

)−1/ν

Pt. (36)

Here Pt,s is the profit maximizing price set by firm s consistent with its production yt,s.
The parameter ν is the elasticity of substitution between two goods and is assumed to be
greater than one. yt is aggregate output, which is exogenous to the firm. It is assumed
that ν > 1 and σ = σ1 ≥ 1.

The market clearing condition is

ct + gt = yt.

The government consumes amount gt of the aggregate good, collects the real lump-sum
tax Υt from each consumer and issues bonds bt to cover financing needs. Fiscal policy is
assumed to follow a linear tax rule for lump-sum taxes Υt = κ0+κbt−1, where β

−1−1 < κ <
1, so fiscal policy is “passive” using terminology of Leeper (1991). Government purchases
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gt are taken to be stochastic, so that gt = ḡ+ g̃t, where the random part g̃t is an observable
exogenous AR process

g̃t = ρg̃t−1 + vt (37)

with zero mean.37

A.1 Private sector optimization

Using the utility function of household-producer s (33) and the budget constraint (34)
and production function (35), one computes the derivatives with respect to (t − 1)-dated
variables

∂Ut,s
∂mt−1,s

= c−σ1t,s π
−1
t + χ(mt−1,sπ

−1
t )−σ2 ,

∂Ut,s
∂bt−1,s

= c−σ1t,s Rt−1π
−1
t ,

and with respect to t-dated variables

∂Ut,s
∂mt,s

=
∂Ut,s
∂bt,s

= −c−σ1t,s ,

∂Ut,s
∂Pt,s

= c−σ1t,s Yt(1− υ)

(
Pt,s
Pt

)−υ
1

Pt
+
υ

α
h1+εt,s

1

Pt,s
.

The Euler equations are

∂Ut,s
∂mt,s

+ βEt,s
∂Ut+1,s

∂mt,s

= 0,

∂Ut,s
∂bt,s

+ βEt,s
∂Ut+1,s

∂bt,s
= 0,

∂Ut,s
∂Pt,s

+ βEt,s
∂Ut+1,s

∂Pt,s
= 0.

The second equation is just the consumption Euler equation, while combining the first and
second equations yields the money demand function. The third equation is the condition
for optimal price setting .

Applying the above conditions, in period t each household s is assumed to maximize
its anticipated utility E0,s(Ut,s(.)) under given expectations. As in Evans et al. (2008), the
first-order conditions for an optimum yield

0 = −hεt,s +
αγ

ν
(πt,s − 1)πt,s

1

ht,s
(38)

+α

(
1− 1

ν

)
y
1/ν
t

y
(1−1/ν)
t,s

ht,s
c−σt,s − αγβ

ν

1

ht,s
Et,s(πt+1,s − 1)πt+1,s,

c−σt,s = βRtEt,s
(
π−1
t+1c

−σ
t+1,s

)
, (39)

37For simplicity, it is assumed ρ is known (if not it could be estimated during learning). Only one shock
is introduced to have a simple exposition.
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where πt+1,s = Pt+1,s/Pt,s and Et,s(.) denotes the (not necessarily rational) expectations of
agents s formed in period t.

Equation (38) is one form of the nonlinear New Keynesian Phillips curve describing
the optimal price-setting by firms. The term (πt,s − 1) πt,s arises from the quadratic form
of the adjustment costs, and this expression is increasing in πt,s over the allowable range
πt,s ≥ 1/2. Equation (39) is the standard Euler equation giving the intertemporal first-order
condition for the consumption path.

We now write the decision rules for consumption and inflation so that they depend on
forecasts of key variables over the infinite horizon (IH).

A.2 The Infinite-Horizon Phillips Curve

Starting with (38), let
Qt,s = (πt,s − 1) πt,s. (40)

The appropriate root for given Q is π ≥ 1
2
and so Q ≥ −1

4
must be imposed to have a

meaningful model. Using the production function ht,s = y
1/α
t,s one can rewrite (38) as

Qt,s =
ν

αγ
y
(1+ε)/α
t,s − ν − 1

γ
y
1/ν
t y

(ν−1)/ν
t,s c−σt,s + βEt,sQt+1,s, (41)

and using the demand curve yt,s/yt = (Pt,s/Pt)
−ν gives

Qt,s =
ν

αγ
(Pt,s/Pt)

−(1+ε)ν/αy
(1+ε)/α
t − ν − 1

γ
yt(Pt,s/Pt)

−(ν−1)c−σt,s + βEt,sQt+1,s.

Defining

xt,s ≡
ν

αγ
(Pt,s/Pt)

−(1+ε)ν/αy
(1+ε)/α
t − ν − 1

γ
yt(Pt,s/Pt)

−(ν−1)c−σt,s (42)

and iterating the Euler equation38 yields

Qt,s = xt,s +
∞∑
j=1

βjEt,sxt+j,s, (43)

provided that the transversality condition

βjEt,sxt+j,s → 0 as j → ∞ (44)

holds. It can be shown that (44) is an implication of the necessary transversality condition
for optimal price setting. For further details see Benhabib et al. (2014).

The variable xt+j,s is a mixture of aggregate variables and the agent’s own future deci-
sions. Thus it provides only a “conditional decision rule”. Equation (43) for Qt,s can be
the basis for decision-making as follows.

So far only the agents’ price-setting Euler equation and the above limiting condition (44)
have been used. Some further assumptions are now made. Agents are assumed to have point
expectations, so that their decisions depend only on the mean of their subjective forecasts.
The model stipulates that all agents have the same utility and production functions. Initial
money and debt holdings, and prices are assumed to be identical.

38It is assumed that expectations satisfy the law of iterated expectations.

28



The assumption of representative agents includes private agents’ forecasting, so that the
agents have homogenous forecasts of the relevant variables. Thus all agents make the same
decisions at each point in time. It is also assumed that from the past agents have learned
the market clearing relation in temporary equilibrium, i.e. ct,s = yt−gt in per capita terms
and thus agents impose in their forecasts that cet+j = yet,t+j − get,t+j, where g

e
t,t+j = ḡ + ρj g̃t.

In the case of constant fiscal policy this becomes cet+j = yet+j − ḡ.
The assumption of representative agents implies that Pt,s = Pt,s′ = Pt for all agents s

and s′ in temporary equilibrium for all periods including the current one, see p. 224 in
Benhabib et al. (2014). In that paper it was additionally assumed that agents’ expectations
also satisfy P e

t+j,s = P e
t+j for future periods j = 1, 2, ... This assumption is not necessary

and is adopted here purely as a simplification.39

These considerations yield the infinite-horizon Phillips curve

Qt = K̃(yt, y
e
t+1, y

e
t+2...) ≡

ν

αγ
y
(1+ε)α−1

t − ν − 1

γ

yt
(yt − (ḡ + g̃t))σ

+ (45)

ν

γ

∞∑
j=1

α−1βj
(
yet+j

)(1+ε)α−1

− ν − 1

γ

∞∑
j=1

βj
yet+j

(yet+j − (ḡ + ρj g̃t))σ
.

Its linearization is (6) in Section 2.2. Under steady state learning (45) becomes

πt(πt − 1) = K̃(yt, y
e
t ) ≡

ν

αγ
y
(1+ε)α−1

t − ν − 1

γ

yt
(yt − ḡ)σ

+

ν

γ

∞∑
j=1

α−1βj (yet )
(1+ε)α−1

− ν − 1

γ

∞∑
j=1

βj
yet

(yet − ḡ)σ
or

πt = Π(yt, y
e
t ) ≡ Q−1[K̃(yt, y

e
t )].

A.3 The Consumption Function

To derive the consumption function from (39), use the flow budget constraint and the NPG
condition to obtain an intertemporal budget constraint. Cashless limit is now assumed.
First, define the asset wealth

at = bt

as the holdings of real bonds and write the flow budget constraint as

at + ct = yt −Υt + rtat−1, (46)

where rt = Rt−1/πt. Note that (Pjt/Pt)yjt = yt is assumed, i.e. the representative agent
assumption is invoked. Iterating (46) forward and imposing

lim
j→∞

(De
t,t+j)

−1aet+j = 0, (47)

where

De
t,t+j =

Rt

πet+1

j∏
i=2

Re
t+i−1

πet+i
(48)

39More extensive discussion of the generalization is available in Evans, Honkapohja and Mitra (2022).
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with ret+i = Re
t+i−1/π

e
t+i, one obtains the life-time budget constraint of the household

0 = rtat−1 + Φt +
∞∑
j=1

(De
t,t+j)

−1Φe
t+j (49)

= rtat−1 + ϕt − ct +
∞∑
j=1

(De
t,t+j)

−1(ϕet+j − cet+j), (50)

where

Φe
t+j = yet+j −Υe

t+j − cet+j, (51)

ϕet+j = Φe
t+j + cet+j = yet+j −Υe

t+j.

Here all expectations are formed in period t, which is indicated in the notation for De
t,t+j

but is omitted from the other expectational variables.
Invoking the relations

cet+j = (βjDe
t,t+j)

1/σct, (52)

which are an implication of the consumption Euler equation (39), yields

ct = rtat−1 + yt −Υt +
∞∑
j=1

(De
t,t+j)

−1ϕet+j −
∞∑
j=1

(De
t,t+j)

−1(βjDe
t,t+j)

1/σct. (53)

As we have ϕet+j = yet+j −Υe
t+j, it follows that

ct =

(
1 +

∞∑
j=1

βj/σ(De
t,t+j)

(1−σ)/σ

)−1(
rtbt−1 +

∞∑
j=0

(De
t,t+j)

−1ϕet+j

)
.

So far it is not assumed that households act in a Ricardian way, i.e. they have not
imposed the intertemporal budget constraint (IBC) of the government. To simplify the
analysis, it is now assumed that consumers are Ricardian, which allows to modify the
consumption function as in Evans and Honkapohja (2010). See Evans, Honkapohja and
Mitra (2012) for discussion of the assumptions under which Ricardian Equivalence holds
along a path of temporary equilibria with learning if agents have an infinite decision horizon.

The government flow constraint is

bt +Υt = ḡ + g̃t + rtbt−1 or bt = ∆t + rtbt−1 where ∆t = ḡ + g̃t −Υt.

By forward substitution, and assuming

lim
T→∞

(De
t,t+T )

−1bet+T = 0, (54)

one gets

0 = rtbt−1 +∆t +
∞∑
j=1

D−1
t,t+j∆t+j. (55)

Note that ∆t+j is the primary government deficit in t+j, measured as government purchases
less lump-sum taxes. Under the Ricardian assumption, agents at each time t expect this
constraint to be satisfied, i.e.

0 = rtbt−1 +∆t +
∞∑
j=1

(De
t,t+j)

−1∆e
t+j, where

∆e
t+j = ḡ + ρj g̃t −Υe

t+j for j = 1, 2, 3, . . . .
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A Ricardian consumer assumes that (54) holds. His flow budget constraint (46) can
then be written as:

bt = rtbt−1 + ψt, where ψt = yt −Υt − ct.

The relevant transversality condition is now (54). Iterating forward and using (52) together
with (54) yields the consumption function and the aggregate demand function takes the
form

yt = gt + ct = gt +

(
∞∑
j=1

βj/σ(De
t,t+j)

(1−σ)/σ

)−1 ∞∑
j=1

(De
t,t+j)

−1(yet+j − (ḡ + ρj g̃t)), (56)

where the discount factor is given by (48).

A.4 Linearized IH Behavioral Rules

Linearizing (40) and (43) around the intended steady state and rearranging gives the fol-
lowing linearized expression for the Phillips curve:

π̂t = κŷt + κ
∞∑
j=1

βj ŷet+j,

where x̂ denotes a linearized variable, and κ is a complicated function of deep structural
parameters.

The consumption function in (56) is linearized as follows. For the sake of brevity, assume
g̃t = 0. The discount factor De

t,t+j has the linearization

D̂e
t,t+j = β1−j

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.

After subtracting gt from both sides of (56) and multiplying both sides of the resulting

expression by
∞∑
j=1

βj/σ(De
t,t+j)

(1−σ)/σ, linearizing the left-hand-side of the resulting consump-

tion function gives

β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

βj/σ
(
β−j)(1−σ)/σ−1

D̂e
t,t+j

=
β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

β2jD̂e
t,t+j

=
β

1− β
ĉt + c∗

1− σ

σ

∑
j≥1

βj+1

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.

Linearizing the right-hand-side gives∑
j≥1

βj ŷet+j − c∗
∑
j≥1

β2jD̂e
t,t+j

=
∑
j≥1

βj ŷet+j − c∗
∑
j≥1

βj+1

j∑
i=1

(
R̂e
t+i−1/π

∗ − π̂et+i/(βπ
∗)
)
.
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Equating the two sides and rearranging gives linearized aggregate demand function

ŷt = − c∗β

σπ∗ R̂t +
∞∑
j=1

βj
(
1− β

β
ŷet+j −

c∗

σ

(
βR̂e

t+j/π
∗ − π̂et+j/(βπ

∗)
))

. (57)

The third equation is the linearized AIT interest rate rule (5).

A.5 Formulation of Learning

The basic model apart from the AIT rule is purely forward-looking while the observable
exogenous shock g̃t is an AR(1) process. Assuming full opacity about AIT rule, the appro-
priate PLM is a linear projection of (yt+1, πt+1, Rt+1) onto an intercept and the exogenous
shock and agents estimate the regressions

su = as + bsg̃u−1 + εs,u, (58)

where s = y, π, R, by using a version of least squares and data for periods u = 1, ..., t− 1.
The latter is a common timing assumption in the learning literature; at the end of period
t− 1 the parameters of (58) are estimated using data through to period t− 1. Usually, the
estimation is done using recursive least squares. This gives estimates ay,t−1, by,t−1, aπ,t−1,
bπ,t−1, aR,t−1, bR,t−1 and using these estimates and data at time t the forecasts are given by

set+j = as,t−1 + bs,t−1ρ
j g̃t,

for future periods t+ j. These forecasts are then substituted into the system to determine
a temporary equilibrium (also called the actual law of motion (ALM) of the economy in
period t). With the new data point the estimates are updated and the process continues.

Denoting the PLM parameters by θt = (ay,t−1, by,t−1, aπ,t−1, bπ,t−1, aR,t−1, bR,t−1), the
parameters are mapped into new values, so there is a mapping θt → T ( θt) to the ALM
parameters. The system consisting of temporary equilibrium and estimation equations is
formally a stochastic recursive algorithm (SRA) and its convergence to equilibrium depends
on the properties of T (θ). It should be noted that the SRA may be written in terms of
decreasing or constant gain. The sense of probabilistic convergence is different in these two
setups. Numerical analysis of this setup is done by simulating the SRA. It is possible to
obtain analytical conditions for the stochastic convergence of the SRA to a fixed point θ∗.
It turns out that in many cases conditions for convergence can be studied by examining
the map θ → T (θ) and the ordinary differential equation

dθ/dτ = T (θ) (59)

in virtual time τ . Local stability conditions of a fixed point θ∗ under (59) called E-stability,
yield convergence conditions for the real-time SRA. Constant and decreasing gain learning
are closely related. For example, in model (14) E-stability is established if stability under
constant gain ω holds for all ω sufficiently small. For example, see Evans and Honkapohja
(2001) or Evans and Honkapohja (2009a) for the theory and many applications.

It turns out that the technical analysis of convergence and computation of domains of
attraction can be carried out using a simplification. Apart from the unknown policy rule
the model is purely forward-looking while g̃t is an AR(1) process. Under full opacity the
PLM is a linear projection of the state variables (yt+1, πt+1, Rt+1) onto an intercept and the
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exogenous shock and in this case convergence of learning to a fixed point is fully governed
by the dynamics of intercepts.

Thus, stability of a steady state can be validly assessed using the simplifying assumption
that g̃t is identically zero. The agents are thought to estimate the long-run mean values of
state variables, called “steady state learning”. The latter is used here as a technical tool.

In simulations of the stochastic model agents are assumed to do least squares learning.

A.6 E-Stability for Linear Multivariate IH Models

Recall the system in first vector form

X̃t = K̃ +
∑∞

i=1
βiM̃X̃e

t,t+i + ÑX̃t−1. (60)

Consider first the learning with transparency case with PLM given by (11). The mapping
PLM→ALM is (12). Assuming that the eigenvalues of Ã and βÃ are inside the unit circle,
the mapping PLM→ALM simplifies to

Ã → βM̃Ã2
(
I − βÃ

)−1

+ Ñ (61)

Ã0 → K̃ + βM̃
(
I − Ã

)−1
(
(1− β)−1I − Ã2

(
I − βÃ

)−1
)
Ã0. (62)

In this case it is straight-forward to obtain the E-stability conditions.
E-stability Conditions: Let (Ã, Ã0) = (Ā, Ā0) denote a rational expectations equi-

librium. The REE, (Ā, Ā0), is E-stable if the real parts of the eigenvalues of

DT (Ã) =
((
I − βĀ

)−1
βĀ2

)T
⊗
(
M̃
(
I − βĀ

)−1
β
)
+

I ⊗
(
M̃
(
I − βĀ

)−1
βĀ
)
+ ĀT ⊗

(
M̃
(
I − βĀ

)−1
β
)

(63)

DT (Ã0) = βM̃
(
I − Ã

)−1
(
(1− β)−1I − Ã2

(
I − βÃ

)−1
)

are less than one.

A.7 Model with Flexible Prices

In the special case of the NK model with flexible prices there is no Phillips curve and the
first order condition (38) is replaced by the static condition

∂Ut,s
∂Pt,s

= c−σ1t,s yt(1− ν)

(
Pt,s
Pt

)−ν
1

Pt
+
ν

α
h1+εt,s

1

Pt,s
= 0.

Under symmetry it yields

c−σ1t α
1− ν

ν
+ h1+ε−αt = 0, (64)

Steady-state learning with point expectations is formalized as before in Section 3. The
temporary equilibrium equations with steady state learning are as follows.
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1. With Ricardian consumers and assuming σ = 1 and g̃t = 0, the market clearing
equation is yt = gt + ct and yields

yt = ḡ + (1− β)

[
yt − ḡ + (yet − ḡ)

(
πet
Rt

)(
Re
t

Re
t − πet

)]
(65)

as the aggregate demand relation.

2. The static labor-consumption optimality condition (64) can be combined with market
clearing to obtain

yt =

(
α
ν − 1

ν
(yt − gt)

−σ1
)α/(1+ε−α)

. (66)

Looking at (66) it is evident that output in temporary equilibrium is exogenous.40

3. Interest rate rule (1) as discussed in the text.

If one substitutes the interest rate rule (1) and also an exogenous value of output into
(65), the model effectively says that the nominal interest rate Rt (and πt via the policy
rule) is the variable that establishes equality of aggregate demand and supply in temporary
equilibrium. Using the interest rate rule (1) then yields the temporary equilibrium value
for inflation πt.

B The ALM When There is Underparameterization

B.1 General setup

The model (10) is now modified to include an underparameterized PLM

X̃1,t = A0 + ÃNX̃1,t−1, where N < L, (67)

X̃1,t =

 X̂t
...

X̂t−(N−2)

 and X̃t =

(
X̃1,t

X̃2,t

)
,

ÃN =


A1 · · · AN−2 AN−1

I · · · 0 0
...

. . .
...

...
0 · · · I 0

 and Ã0 =


A0

0
...
0

 .

The vector X̃1,t is 3(N − 1) dimensional and it consists of the current and first N − 2
lagged endogenous variables. Thus the first block of X̃1,t is

X̂t = A0 +
N−1∑
i=1

AiX̂t−i, (68)

while the other blocks express identities. Here ÃN is a square matrix with dimensions
3(N − 1), where N − 1 is the number of lags in the PLM of agents. Matrices Ai are 3× 3,
while Ã0 and A0 are 3(N − 1) and 3 dimensional column vectors, respectively.

40Exogeneity of output holds in the classical monetary model, see e.g. Gali (2008), chapter 1.
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Iterating the PLM, we get

X̃e
1,t,t+i = (I + ÃN + ...+ ÃiN)Ã0 + Ãi+1

N X̃1,t−1

and the unprojected ALM is(
X̃1,t

X̃2,t

)
=

([
K̃ + M̄11

∑∞
i=1 β

i[(I + ÃN + ...+ ÃiN)Ã0 + Ãi+1
N X̃1,t−1]

0

]
+

N̂ N̂ · · · N̂
I 0 · · · 0
...

. . . · · · ...
0 0 I 0




X̂t−1

X̂t−2
...

X̂t−(L−1)


 ,

where M̄11 is the submatrix of M̃ formed from the first 3(N − 1) rows and columns of M̃
in (10). The matrix multiplying (X̂T

t−1, ..., X̂
T
t−(L−1))

T is as before, see proof of Proposition
1. It is seen that the ALM is not in the same space as the PLM as there are further lags
of X̂t in the ALM. The map of the intercept term is

A0 → K̃ + M̄11

∑∞

i=1
βi(I + ÃN + ...+ ÃiN)Ã0 (69)

= K̃ + M̄11

(∑∞

i=1
βi(I − ÃN)

−1(I − Ãi+1
N

)
)Ã0

= K̃ + M̄11(I − ÃN)
−1[

β

1− β
I − βÃ2

N(I − βÃN)
−1]Ã0,

if the eigenvalues of ÃN and βÃN are inside the unit circle.
Noting that

M̄11βÃ
2
N

∑∞

i=0
βiÃiN = [M̄11βÃ

2
N(I − βÃN)

−1],

the autoregressive term of the unprojected ALM can be written

(
X̃1,t

X̃2,t

)
=

(
M̄11βÃ

2
N(I − βÃN)

−1 0
0 0

)(
X̃1,t−1

X̃2,t−1

)
+


N̂(X̂t−1 + ...,+X̂t−(L−1))

X̂t−2
...

X̂t−(L−1)

+Zt.

(70)
where Zt is a white noise disturbance term. Define

F (ÃN) = [M̄11βÃ
2
N(I − βÃN)

−1]

is 3(N − 1) × 3(N − 1) while the dimension of the whole system is 3(L − 1) × 3(L − 1).
Note also the form of M̄11, which is zero except for top-left 3×3 corner. The (unprojected)
ALM is V AR(L− 1) in the vector X̂t while the PLM is a V AR(N − 1) process, and it is
necessary to map the unprojected ALM into the space of V AR(N − 1) processes.
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Next, compute

F (ÃN) =


βM(A2

1 + A2) · · · βM(A1AN−2 + AN−1) βMA1AN−1

0 · · · 0 0
...

...
... 0

0 · · · 0 0

 (71)

×

I − β


A1 A2 · · · AN−2 AN−1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




−1

Looking at this form of F (ÃN), we note that in the first matrix all except the first row
blocks of 3× 3 matrices are zero. This allows writing F (ÃN) in the form

F (ÃN) =


M1 M2 · · · MN−1

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 (72)

and the unprojected ALM is

X̂ALM
t = (M1+N̂)X̂t−1+ ...+(MN−1+N̂)X̂t−(N−1)+ N̂X̂t−N + ...+ N̂X̂t−(L−1)+Zt. (73)

Next, denote the projected ALM as

X̂PR
t =

N−1∑
i=1

BiX̂t−i + εt.

Then the mean forecast error is E[X̂ALM
t − X̂PR

t ] = E[ES] where

ES =
N−1∑
i=1

(Mi + N̂ −Bi)X̂t−i + N̂(X̂t−N + ...+ X̂t−(L−1)).

Minimizing the square of the mean forecast error yields the orthogonality conditions:

0 = E[(ES)X̂T
t−j] =

N−1∑
i=1

E[(Mi + N̂ −Bi)X̂t−iX̂
T
t−j + N̂(X̂t−N + ...+ X̂t−(L−1))X̂

T
t−j],

for j = 1, ...N − 1.

Now let X̂t−i =
(
ŷt−i, R̂t−i, π̂t−i

)T
and define41

EX̂t−iX̂
T
t−j =

 E(ŷt−iŷt−j) E(ŷt−iR̂t−j) E(ŷt−iπ̂t−j)

E(R̂t−iŷt−j) E(R̂t−iR̂t−j) E(R̂t−iπ̂t−j)

E(π̂t−iŷt−j) E(π̂t−iR̂t−j) E(π̂t−iπ̂t−j)

 = Ωi.j, (74)

41This standard procedure presumes that X̂t−i is covariance stationary. However, the algebraic operation
can be done even if stationarity is not presupposed.
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Then

0 = E[(ES)X̂T
t−j] =

N−1∑
i=1

(Mi + N̂ −Bi)Ωi,j + N̂

L−1∑
k=N

Ωk,j, for j = 1, ...N − 1. (75)

We also need to use the Yule-Walker equations to compute Ωk,j(m,n) for k, j = 1, ..., L−
1 and m,n = 1, 2, 3.42 Let Ωkj denote the 3× 3 matrix with elements Ωk,j(m,n). Then use
(72) and define

Fext(ÃN) =



M1 + N̂ M2+N̂ · · · MN−1 + N̂ N̂ · · · N̂ N̂
I 0 · · · 0 0 · · · 0 0
0 I · · · 0 0 · · · 0 0
...

...
. . . · · · · · · · · · ...

...
0 0 · · · I · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 · · · 0 · · · I 0 0
0 0 · · · 0 · · · 0 I 0


which is 3(L− 1)× 3(L− 1) matrix. Consider its eigenvalues from the system

det[Fext(ÃN)− λI] = 0.

Then define
A = Fext(ÃN)⊗ Fext(ÃN)

and obtain the matrix of second moments of the V AR(L− 1) process (70). in vector form

vec(Σ) = (I − A)−1vec(QZ),

where Σ = (ωij) = E(X̂ALM
t (X̂ALM

t )T ) and QZ is the covariance matrix of the augmented
form of the error term Zt. Alternatively, one can use the linear equation system

Σ = Fext(ÃN)ΣFext(ÃN)
T +QZ .

Introducing the notation

Σ =


Γ0 Γ1 · · · ΓL−2

ΓT1 Γ0 · · · ΓL−3
...

... · · · ...
ΓTL−2 ΓTL−3 · · · Γ0

 ,

we have Γi = E(X̂ALM
t (X̂ALM

t−i )T ) for i = 1, ..., L−2. The i′th autocovariance matrix of the
original process (70) is then

Γi = (M1 + N̂)Γi−1 + ...+ (MN−1 + N̂)Γi−(N−1) + N̂Γi−N + ...+ N̂Γi−(L−1)

for i = L− 1, L, ... from which the required covariances Ωkj(m,n) for k, j = 1, ..., L− 1 and

m,n = 1, 2 are obtained and substituted into (74). As Ωij = EX̂t−iX̂
T
t−j we have

Γj−i = Ωij =

{
Γj−i for j ≥ i
ΓTj−i for j < i.

.

These equations are used in the numerical analysis reported in Table II and in Appendix
B.3.

42The method is explained well in Section 10.2 of Hamilton (1994).
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B.2 Stability in the sticky price case

We begin with the technical details for Remark 4 and Table II in the case of PLM lag
length, N − 1, where 1 < N ≤ L− 1. For simplicity, we assume that exogenous shocks are
mean-zero and i.i.d, and that agents have the following PLM

X̃t = ÃNX̃t−1 + Ã0,t−1

Ã0,t = ω(X̃t − ÃNX̃t−1 − Ã0,t−1) + Ã0,t−1.

ÃN contains the RPE coefficients (or the correct ALM coefficients in the case N = L),
imposes zeros on lags of X̂ exceeding N − 1, and is fixed over time (i.e. agents only
estimate the intercept term recursively). The actual law of motion for X̃t can be expressed
as

X̃t = BX̃t−1 +DTaÃ0,t−1 + shocks

where B and DTa are functions of ÃN and the model’s structural parameters. This implies
the following law of motion for Wt = (X̃T

t , Ã
T
0,t)

T

Wt =

(
B DTa

ω(B − ÃN) ωDTa + (1− ω)I

)
Wt−1 + shocks

= DT ∗Wt−1 + shocks

We solve for largest gain parameter, ω0, that ensures that the roots of DT are inside the
unit circle. Robust stability obtains if ω0 > 0.01, i.e. we have stability under constant gain
learning for all ω < 0.01. The numerical results are given in Table II in the main text.
For those calculations, we use the calibration reported in section 3 with γ = 128.21. For
simplicity, the shock is assumed to be i.i.d.43

B.3 Flexible price case

Consider the linearized IH model of the flex-price economy studied above. Output is
exogenous, so (7) and (5) yield the system(

R̂t

π̂t

)
=

∞∑
j=1

βj
(

−1 β−2

−π∗

ψp
β−2 π∗

ψp

)(
R̂e
t+j

π̂et+j

)
+

L−1∑
i=1

(
0 0
0 −1

)(
R̂t−i
π̂t−i

)
+

(
ϵt
π∗

ψp
ϵt

)
,

(76)
where an i.i.d. shock to the aggregate demand has been added. This model can be put in
the form (73), where the coefficient matrices are 2× 2 and take the form44

M = (mij), N̂ =

(
0 0
0 −1

)
and Ai ≡ Mi+N̂ =

(
0 ai12
0 ai22

)
for i = 1, . . . , N−1, (77)

where m11 = −1, m12 = β−2, m21 = π∗/ψp, m22 = −β−2π∗/ψp. Postulating the PLM with
matricesAi, i = 1, N−1, it is possible in principle to compute the unprojected and projected
ALMs. For example, we can show that both ALMs yield non-stationary processes for any
set of PLM parameters when the model is calibrated with β = 0.99, ψp = 1.2, π∗ = 1.005,

43Mathematica routine available on request.
44In the flex-price case the first column of Mi and N̂ are zero.
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L = 4 and N = L− 1. With these parameter values and augmenting the ALM with N̂ to
V AR(3) process it is seen that the projected ALM process is non-stationary.

Proposition 3 in Section 3.4 establishes non-stationarity under more general assumptions
about the flexible price model. The proposition covers the general case N < L − 1. The
proof of the proposition is in Appendix D.

C Further Results

C.1 Domain of Escape for Inflation Targeting and AIT

Figure A.1 shows the domain of escape under IT. The basic parameter settings are as given
earlier.

Figure A.1 HERE

It should be noted that the result about escape from low steady state πLow, yLow differs
from that in Figure I of Honkapohja and Mitra (2020). There are some differences in
parameter values and most importantly in initial conditions for R0 and Re

0. In computing
conditional domain of attraction it is natural to assume that R0 and R

e
0 are approximately

equal to the steady state value R∗, whereas computation of domain of escape Figure A.1
assumes that R0 and Re

0 are approximately 1.
Figure A.2 shows the domain of escape under AIT when Ã0 = Ā where Ā is the rational

expectations equilibrium coefficients corresponding to the unique dynamically stable MSV
solution of the linearized model (i.e. the model linearized around the target steady state).

Figure A.2 HERE

C.2 Robust Stability: Policy Parameters and Transparency

Tables C.1 and C.2 show how Table I results (full opacity) change if either ψp = 2 and
ψy = 0.125, or ψp = 1.5 and ψy = 1. Table C.3 reports robust stability results for the case
of learning with transparency. The approach outlined in Appendix B.2 with N = L and
Ãn containing the correct MSV coefficients was taken to produce the results reported in
Table C.3.

γ 42 128.21 350
ω0 (IT ) 0.03104 0.03255 0.03642
ω0 (PLT ) 0.01164 0.00742 0.00432
ω0 (AIT with L = 6) 0.00262 0.00391 0.00493
ω0 (AIT with L = 20) 0.00020 0.00041 0.00075
ω0 (AIT with L = 32) 0.00008 0.00016 0.00032

Table C.1: Least upper bounds for ψp = 2 with full opacity

γ 42 128.21 350
ω0 (IT ) 0.03058 0.03920 0.04337
ω0 (PLT ) 0.00991 0.00723 0.00505
ω0 (AIT with L = 6) 0.00381 0.00552 0.00752
ω0 (AIT with L = 20) 0.00035 0.00076 0.00134
ω0 (AIT with L = 32) 0.00014 0.00032 0.00062
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Table C.2: Least upper bounds for ψy = 1 with full opacity

γ 42 128.21 350
ω0 (L = 6) 0.02159 0.02360 0.02662
ω0 (L = 20) 0.02163 0.02389 0.02764
ω0 (L = 32) 0.02163 E-unstable E-unstable

Table C.3: Least upper bounds under learning with transparency.

Rule IT AIT (L = 6) AIT (L = 20) AIT (L = 32)
ω0 0.29358 0.01669 0.00285 0.00154

Table C.4: Least upper bounds for κ ≈ 0.005 with full opacity45

C.3 Robustness of Stability in the Calvo Model

Table C.5 gives the least upper bounds for robustness of stability in the Calvo model.
Following Preston (2005) or more recently Eusepi, Gibbs and Preston (2021), the two
behavioral equations, log-linearized at the target steady state, are46:
(i) the aggregate demand curve

ŷt = −σı̂t + Êt

∞∑
i=0

βi[(1− β)ŷt+1+i − σ(βı̂t+1+i − π̂t+1+i)] + rnt ,

where rnt is a demand shock.
(ii) the Phillips curve

π̂t = κŷt + Êt

∞∑
i=0

(αβ)i[καβŷt+1+i + (1− α)βπ̂t+i+1].

Here hat denotes proportional deviation of the variable from its value at the target steady
state. Further, β is the subjective discount rate, σ is the intertemporal elasticity of substi-
tution, κ is a parameter indicating degree of price stickiness and α is the fraction of firms
which cannot change the price in a period. We tacitly assume log-utility in consumption
and linear disutility in labor, so that κ = (1−α)(1−αβ)

α
. There is also

(iii) the linearized AIT interest rate rule47

ı̂t = ψ̄p

(
L−1∑
k=0

π̂t−k

)
+ ψyŷt.

It is straightforward to show that the analogue of Proposition 1 holds.48 For robustness of
stability (analogue of Remark 1) table C.5 reports robust stability results under learning
with opacity for IT, AIT, PLT and for different values of α. All other parameters are
reported in Section 2.3.

45In Table C.4, we set γ = 17000 but leave all other parameters at benchmark values.
46See Preston (2005), equations (18) and (19).
47Note that ı̂t = (it− i∗)/i∗ = R̂t(1+ i

∗)/i∗ as R = 1+ i. So ψ̄p = ψp(i
∗/(1+ i∗)), where ψp is the policy

rule parameter in the undeviated model.
48Details are available on request.
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α 0.66 0.75 0.9
ω0 (IT ) 0.13618 0.15681 0.17895
ω0 (PLT ) 0.03467 0.20753 0.04287
ω0 (AIT with L = 6) 0.01158 0.01938 0.10152
ω0 (AIT with L = 20) 0.00166 0.00265 0.01044
ω0 (AIT with L = 32) 0.00073 0.00121 0.00439

Table C.5: Least upper bounds for ψp = 1.5, ψy = 0.125

We have thus shown that the full opacity results under Calvo and Rotemberg are similar
for a standard calibration. Naturally, one could study further stability and other properties
for the Calvo model in the same way as was done in this paper. We conjecture that
analogues of various results shown above for the Rotemberg model also hold for the Calvo
model.

C.4 Price level targeting vs. AIT

Consider the case of full opacity in the linearized economy described in section 3.2 and
fix the gain to zero (ω = 0). Under PLT, inflation (π) and the price gap (p) follow the
processes:49

π̂t = −π∗hp̂t−1

p̂t = (1− h)p̂t−1 = (π∗)−1π̂t + p̂t−1

where

h =
βκψpy

∗(y∗ − ḡ)

β(π∗)ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗
∈ [0, 1].

These expressions for inflation and the price level gap under PLT with full opacity and zero
gain reveal several properties of the policy regime:

1. Given (1 − h) ∈ [0, 1], the price gap converges monotonically to the target provided
that κ > 0. Hence, if PLT is implemented when prices are undesirably low (p̂−1 < 0),
then the price level converges monotonically to zero from below.

2. Because price gap converges monotonically to zero, so does inflation. E.g., if p̂−1 < 0,
then π̂t−1 ≥ π̂t ≥ 0 for all t ≥ 1 and we have limt→∞ π̂t = 0.

3. As prices become very sticky (κ close to zero), the “make-up” inflation implied by
the policy regime becomes more persistent. In the special case of fully flexible prices,
π̂0 adjusts to fully close the price level gap and then π̂t = p̂t = 0 for t > 0. In this
regard, price flexibility enhances the performance of PLT.

Consider now AIT with full opacity and gain equal to zero. Inflation and the implied
price level gap follow the processes:

π̂t = −h
L−1∑
k=1

π̂t−k = −π∗h(p̂t−1 − p̂t−L)

49The linearized PLT rule is: R̂t = ψpp̂t +
ψy

y∗ ŷt. For brevity, we set exogenous shocks to zero in each

period and assume π̂e−1 = R̂e−1 = ŷe−1 = 0 throughout section C.4, but the main results of this section do
not hinge of these details.
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and
p̂t = (1− h)p̂t−1 + hp̂t−L = (π∗)−1π̂t + p̂t−1

where h is defined above. In first-order form:

Xt = AXt−1

where Xt = (π̂t, ..., π̂t−L+2)
T . The roots of A solve the characteristic polynomial: λL−1 +

h
∑L−2

k=0 λ
k. It is possible to show that the roots of A are strictly inside the unit circle if

κ < ∞ (price are sticky), but there are the roots of unity if prices are fully flexible.50 In
the case of flexible prices specifically, we have that h = 1, which implies:

π̂t = −
L−1∑
k=1

π̂t−k = −π∗(p̂t−1 − p̂t−L)

and
p̂t = p̂t−L

which implies: π̂t = π̂t−L. Studying these equations reveal some important properties of
AIT that separate the finite window AIT specification from PLT:

1. In the case of AIT, inflation and the implied price level gap follow deterministic cycles
under fully flexible prices, and they tend to oscillate under sticky prices. This is in
stark contrast to PLT, which ensures that inflation converges monotonically to the
target to close an initial price level gap.

2. Increasing price flexibility worsens stability under AIT and leads to a situation where
an initial inflation gap is never closed. In contrast, price flexibility implies that the
price level gap is closed immediately under PLT.

Simulations illustrate key differences between PLT under opacity and AIT under opacity
with ω = 0, see Figures A.3 and A.4 below. The simulations assume that annual inflation
is persistently 1% below target for roughly 8 years prior to the implementation of AIT or
PLT. It is seen that inflation overshoots the target under PLT (“make-up” inflation) before
monotonically converging to target. The convergence happens in only one period under
PLT with flexible prices. Under AIT, however, there are oscillations. With flexible prices,
these oscillations are deterministic cycles. Numerically, it can be shown that while ω = 0,
increasing L in the sticy price model causes the largest root determining the stability of the
system to increase, which suggests that instability will result for smaller values of ω > 0
when L is large, as confirmed by Tables 1, C.1-C.2, C.4-C.5.

FIGURES A.3 AND A.4 ABOUT HERE

C.5 Learning the Exponential Moving Average Rule

In section 4 we considered the issue of whether agents can learn the window length L under
a finite simple moving average AIT regime. It turns out that the agents can learn wc in
an opaque exponential moving average AIT regime as well, but only if they use a specific

50The result is shown using the Jury stability criterion. See the proof of Proposition 1.
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form of PLM. To see this, consider the following approximation of the exp MA rule (28)
and (29):51

R̂t =
ψp
π∗

(
wcπ̂t + wc

ψyπ
∗

ψpy∗
ŷt + (1− wc)π̂

cb
t

)
(78)

π̂cbt = wcπ̂t−1 + wc
ψyπ

∗

ψpy∗
ŷt−1 + (1− wc)π̂

cb
t−1.

Equivalently:52

R̂t = wc

(
ψp
π∗ π̂t +

ψy
y∗
ŷt

)
+ (1− wc)R̂t−1. (79)

It can be shown that the Taylor Principle (8) is sufficient for determinacy in a model with
a rule of the form (79), and that the unique bounded REE of the model assumes the form:

X̂t :=

 π̂tŷt
R̂t

 = ΩX̂t−1 + shocks, (80)

where only the third column of Ω has non-zero entries (i.e. the lagged interest rate is the
only endogenous state variable). Agents can in principle learn the REE implemented under
the exp MA rule (79) by recursively estimating a PLM that has the same functional form
as (80). If the agents learn the REE, they can infer wc from estimates of the coefficient
multiplying R̂t−1 in the estimated interest rate rule, 1− wc.

Consider first the case of flexible prices. Following Appendix A.7, the model equations
are given by

R̂t =
∞∑
j=1

βj
(
β−2π̂et+j − R̂e

t+j

)
, (81)

R̂t = wc
ψp
π∗ π̂t + (1− wc)R̂t−1, (82)

where for brevity there is no random shock. In view of Appendix A.7, it is assumed that
agents perceive that output is exogenous (ŷt = ŷet+j = 0 for j ≥ 0). We assume that agents’

PLM for z ∈ {π̂, R̂} assumes the form:

zt = az + bzR̂t−1.

Appendix D.8 gives the proof of the result:

Proposition 9 Assume that the Taylor principle (8) holds for the exponential moving
average rule (82). If prices are fully flexible, then the unique bounded equilibrium is E-
stable.

Next, we consider the case of sticky prices. In this case one needs to revert to numerical
analysis, which yields the result:

51To derive (78), equation (28) is first modified to allow for output gap targeting.
52Note that the equivalence between (78) and (79) breaks down if the ZLB binds in any period.
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Remark 6: Assume that the Taylor principle (8) holds. The exponential moving av-
erage rule (79) delivers E-stability and robust stability for many parameter configurations
given in Table C.6.

Table C.6 shows the largest gain parameter consistent with stability of the target equi-
librium when agents know the RE slope coefficients in their correctly-specified PLM (Ω
in (80)) but estimate the intercept in their PLM using a version of constant-gain learning
(similar to Tables II and C.3). It is seen that the target equilibrium is robustly stable
under learning under different assumptions about the length of the averaging window (wc).
Hence, agents can learn the target REE and the averaging window by conditioning their
forecasts on a lag of the interest rate.

γ 42 128.21 350
ω0 (IT ) 0.04242 0.04545 0.05316
ω0 (wc = 0.5) 0.03911 0.05179 0.06219
ω0 (wc = 0.2) 0.03260 0.05437 0.10368
ω0 (wc = 0.01) 0.02936 0.04069 0.05899

Table C.6: Least upper bounds ω0 for policy parameters ψp = 1.5, ψy = 0.125
Note: the case wc = 1 corresponds to IT.

D Proofs

D.1 Proof of Proposition 1(i)

In the linearization (18)-(19) we get53

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
−ψp

π∗ 1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

β
β−1

κ 0 0

0 0 0


DFxi =

 0 0 0
0 0 0
0 −ψp/π∗ 0

 , i = 1, ..., L− 1.

where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0

53It can be seen that, with steady state learning, the linearization is the same as in Section 3.1.
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if σ > (y∗ − ḡ)/y∗. It follows that

M = −(DFx)
−1DFxe =

y∗(β2κψp(y∗−ḡ)+(β−1)π∗2σ)
⅁

π∗y∗(ḡ−y∗)
⅁

β2π∗y∗(y∗−ḡ)
⅁

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁

κπ∗y∗(ḡ−y∗)
⅁

β2κπ∗y∗(y∗−ḡ)
⅁

π∗σ((β−1)π∗ψy−κψpy∗)
⅁

(ḡ−y∗)(π∗ψy+κψpy∗)
⅁

β2(y∗−ḡ)(π∗ψy+κψpy∗)
⅁

 ,

Ni = −(DFx)
−1DFxi = N̂ = 0 βψpy∗(ḡ−y∗)

βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗
0

0 βκψpy∗(ḡ−y∗)
βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗

0

0 π∗σψpy∗

βπ∗ψy(y∗−ḡ)+βκψpy∗(y∗−ḡ)+(π∗)2σy∗
0

 , i = 1, ..., L− 1.

where

⅁ = (β − 1)
(
βπ∗ψy(y

∗ − ḡ) + βκψpy
∗(y∗ − ḡ) + (π∗)2σy∗

)
< 0.

Introduce the notation xt = (ŷt, π̂t, R̂t) etc. The linearized the system (18), (19) can be
written

Zt = QZt−1, where (83)

Zt = ( xet xt xt−1 xt−2 · · · xt−(L−2) )T

Q =



(1− ω)I3 ωI3 0 · · · 0 0
(1− ω)M ωM +N1 N2 · · · NL−2 NL−1

0 I3 0 · · · 0 0
0 0 I3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I3 0


.

For stability, the roots of P (λ) = Det[Q − λI3L] must be inside the unit circle. One can
show that

P (λ) = λ2L−2(λ− (1− ω))P̃ (λ)

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λL−1 + h
L−2∑
k=0

λk)

where

h =
βκψpy

∗(y∗ − ḡ)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗
∈ (0, 1)

if γ > 0. Using the stability criterion in Jury (1961), the roots of (λL−1 + h
∑L−2

k=0 λ
k) are

inside the unit circle if and only if54

1− kh2

1 + (k − 1)h
> 0, k = 1, . . . , L,

54Proof in Mathematica available on request.
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which is satisfied for all L. Therefore, the roots of P (λ) are inside the unit circle if ∂λ/∂ω <
0 evaluated at ω = 0 and λ = 1. To evaluate the derivative, we consider the Taylor series
expansion of P̃ (λ) up to second order at point (λ0, ω0). Let (dλ, dω) = (λ, ω) − (λ0, ω0).
Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
Now

P̃ω(λ0, ω0) = 0

P̃λ(λ0, ω0) = 0

so we get the approximation

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
.

Now impose
P̃ (λ, ω)− P̃ (λ0, ω0) = 0

to compute the derivative of the implicit function. So we have

P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)
dω2

2
+ P̃λλ(λ0, ω0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(λ0, ω0)

P̃λω(λ0, ω0)
+
P̃λλ(λ0, ω0)

P̃λω(λ0, ω0)

(
dλ

dω

)2
)

Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ωω(1, 0) = (−1)L
2(y∗ − ḡ)((1− β)βπ∗ψy + κy∗(Lβψp − π∗))

(β − 1)2 (βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λλ(1, 0) = (−1)L
2 (βπ∗ψy(y

∗ − ḡ) + Lβκψpy
∗(y∗ − ḡ) + (π∗)2σy∗)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗

P̃λω(1, 0) = (−1)L
κy∗(y∗ − ḡ)(π∗ − 2Lβψp) + (2− β)βπ∗ψy(ḡ − y∗)− (1− β)(π∗)2σy∗

(β − 1) (βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ) + (π∗)2σy∗)

One can show that Pωω(1, 0) > 0, Pλλ(1, 0) > 0, Pλω(1, 0) > 0 if L is even and Pωω(1, 0) < 0,
Pλλ(1, 0) < 0, Pλω(1, 0) < 0 if L is odd. Therefore, ∂λ/∂ω < 0 and we have stability for
small ω and κ > 0. We note that the same result obtains if ψp > π∗/(βL).

D.2 Proof of Proposition 1(ii)

In the case γ = 0 the dynamics of output expectations do not depend on the rest of the
system and can be shown to be locally convergent. Introducing the notation x̃t = (π̂t, R̂t),
the linearization (18)-(19) becomes

M̃ ≡ −(DF̃x)
−1DF̃xe =

(
π∗

ψpβ(1−β) − βπ∗

ψp(1−β)
1

β(1−β) − β
(1−β)

)
and

Ñi ≡ −(DF̃x)
−1DF̃xi =

(
−1 0
0 0

)
, i = 1, ..., L− 1.
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The system becomes
Z̃t = Q̃Z̃t−1, where (84)

Z̃t = ( x̃et x̃t x̃t−1 x̃t−2 · · · x̃t−(L−2) )T

Q̃ =



(1− ω)I2 ωI2 0 · · · 0 0

(1− ω)M̃ ωM̃ + Ñ1 Ñ2 · · · ÑL−2 ÑL−1

0 I2 0 · · · 0 0
0 0 I2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I2 0


.

Note that in Q̃ we have Ñi = Ñ for all i and Ñ is zero except for element ñ11. In the
determinant eliminate the second column from each block ≥ 3 and also corresponding row.
We get

det[Q̃− λI2L] = λL−2 det[K̃L+2], (85)

where

K̃L+2 =



(1− ω)I2 − λI2 ωI2 0 0 · · · 0 0

(1− ω)M̃ ωM̃ + Ñ1 − λI2 N1 N1 · · · N1 N1
0 (1, 0) −λ 0 · · · 0 0
0 0 1 −λ · · · 0 0
...

...
...

. . . . . .
...

...

0 0 0 0
. . . −λ 0

0 0 0 0 · · · 1 −λ


(L+2)×(L+2)

and N1 = (−1, 0)T .
Consider first the case L = 1, so there are no lags. We can focus on the learning

dynamics of π̂t and R̂t, i.e. the matrix(
(1− ω)I ωI

(1− ω)M̃ ωM̃

)
, where M̃ =

(
−π∗

(β−1)βψp

βπ∗

(β−1)ψp
−1

(β−1)β
β
β−1

)
.

Assume ψp > β−1π∗ = R̄. When L = 1 the system is four dimensional and two of the
eigenvalues are those of M̃ . Clearly tr(M̃ − I) < 0 and det(M̃ − I) > 0. The other two
eigenvalues are a repeated root equal to 1− ω < 1 for all small ω. So E-stability holds in
this case.

In the case of general L, the characteristic polynomial of KL+2 has the following struc-
ture:55

det[KL+2] = λ(λ− 1 + ω)P (n, ω, λ)

where n = L and

P (n, ω, z) = zn + b̃zn−1 + c̃zn−2 + ...+ c̃z + an, where (86)

b̃ =
ω

1− β
b1 with b1 = (1− π∗

βψp
),

c̃ =
ω

1− β
and an = c̃− 1.

55The Mathematica routine is available on request.
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Here b1, β, ω ∈ (0, 1).
To apply the Schur-Cohn conditions the polynomial (86) is written in a general form

A(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an

so
a1 = b̃, a2 = c̃, . . . , an−1 = c̃ and an = c̃− 1. (87)

Then define the matrices56

D±
n−1 =


1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . . . . .

...
an−2 an−3 · · · a1 1

±


0 0 · · · 0 an
0 0 · · · an an−1
...

...
. . .

...
...

0 an · · · a4 a3
an an−1 · · · a3 a2

 .

The roots of A(λ) are inside the unit circle if and only if the following conditions hold: (a)
A(1) > 0 and (b) (−1)nA(−1) > 0, and (c) the matrices D±

n−1 are positive innerwise, i.e.,∣∣D±
1

∣∣ > 0,
∣∣D±

3

∣∣ > 0, ...,
∣∣D±

n−1

∣∣ > 0 when n is even and
∣∣D±

2

∣∣ > 0,
∣∣D±

4

∣∣ > 0, ...,
∣∣D±

n−1

∣∣ > 0
when n is odd, where D±

i > 0 denote the inners of D±
n−1 > 0 as defined in Elaydi (2005).

Now

A(1) = 1 + b̃+ (n− 2)c̃+ c̃− 1 =
ω

1− β
(b1 + n− 1) > 0 if n ≥ 1.

(−1)nA(−1) = 1− b̃+ c̃− 1 = c̃− b̃ =
ω

1− β
(1− b1) > 0 if n is even and

(−1)nA(−1) = (−1)(−1 + b̃− c̃+ c̃− 1) = 2− b̃ > 0 if n is odd,

so conditions (a) and (b) hold. Substituting in the relations (87) we get

D±
n−1 =


1 0 0 · · · 0

b̃ 1 0 · · · 0
...

...
. . . · · · ...

c̃ c̃ · · · 1 0

c̃ c̃ · · · b̃ 1

±


0 0 · · · 0 c̃− 1
0 0 · · · c̃− 1 c̃
...

...
. . .

...
...

0 c̃− 1 · · · c̃ c̃
c̃− 1 c̃ · · · c̃ c̃

 ,

where n ≥ 2. Assume first that n is even and consider the inners D±
1 , D

±
3 , ..., D

±
n−1. we

get ∣∣D±
1

∣∣ = 1± (c̃− 1) = c̃ or 2− c̃ which are > 0 if c̃ < 2

and ∣∣D±
3

∣∣ =
∣∣∣∣∣∣
 1 0 0

b̃ 1 0

c̃ b̃ 1

±

 0 0 an
0 an c̃
an c̃ c̃

∣∣∣∣∣∣
yielding

∣∣D−
3

∣∣ = (b̃ − c̃)(c̃ + b̃ − b̃c̃) < 0 as 0 < b̃ < c̃, which implies instability for n ≥ 4
even, but stability for n = 2.

Next assume that n is odd. One computes∣∣D±
2

∣∣ = ∣∣∣∣( 1 ±an
b̃± an 1± c̃

)∣∣∣∣
56This form of the Schur-Cohn conditions is given in Elaydi (2005), p.247.
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so
∣∣D+

2

∣∣ = 3c̃ − bc̃ + b̃ − c̃2 > 0 and
∣∣D−

2

∣∣ = (c̃ − b̃)(1 − c̃) > 0 for sufficiently small c̃ > 0,
which implies stability for n = 3. Next consider

D±
4 =


1 0 0 0

b̃ 1 0 0

c̃ b̃ 1 0

c̃ c̃ b̃ 1

±


0 0 0 c̃− 1
0 0 c̃− 1 c̃
0 c̃− 1 c̃ c̃

c̃− 1 c̃ c̃ c̃

 .

One computes

D−
4 =


1 0 0 1− c̃

b̃ 1 1− c̃ −c̃
c̃ 1 + b̃− c̃ 1− c̃ −c̃
1 0 b̃− c̃ 1− c̃

 ,

so
∣∣D−

4

∣∣ = (b̃ − c̃)2(b̃c̃ − b̃ − 1) < 0 implying instability for n odd. So overall there is
instability for n ≥ 4 and stability for n ≤ 3.

We further note that
∣∣D−

5

∣∣ = (b̃− c̃)2(b̃2(1− c̃)+ c̃(1+ b̃)−2) < 0 for small ω. Therefore,
we have instability for any ψp > 0 if L > 4, since

∣∣D−
4

∣∣ < 0 and
∣∣D−

5

∣∣ < 0.
These last inequalities also hold under the weaker restriction ψp > π∗/(βL).

D.3 Proof of Proposition 2

First consider (i). The model (5), (6) and (7) with i.i.d. government spending shock can
be written as

ŷt = cRR̂t +
∞∑
j=1

βj
(
cππ̂

e
t+j + cyŷ

e
t+j + cRR̂

e
t+j

)
+ ĝt

π̂t = κŷt + κ
∞∑
j=1

βj ŷet+j + gpcĝt

R̂t =
ψp
π∗

L−1∑
i=0

π̂t−i + ψy
ŷt
y∗

where ĝt is an i.i.d shock, cR = −c∗β(σπ∗)−1, cπ = −cRβ−2, cy = β−1(1 − β), gpc is a
complicated function of deep parameters, and κ = κ(γ) with ∂κ

∂γ
< 0 and limγ→∞ κ = 0.

Suppose the following PLM:

π̂t = aπ + bππ̂t−1 (88)

R̂t = aR + bRπ̂t−1 (89)

ŷt = ay + byπ̂t−1 (90)

which implies

π̂et+j = (1− bj+1
π )aπ/(1− bπ) + bj+1

π π̂t−1

set+j = as + bs(1− bjπ)aπ/(1− bπ) + bsb
j
ππ̂t−1

where s = ŷ, R̂. Under this PLM, a restricted perceptions equilibrium (RPE) of (5), (6) and
(7) is given by coefficients (aπ, aR, ay, bπ, bR, by) which satisfy the least-squares orthogonality
restriction

Eπ̂t−1 (st − as − bsπ̂t−1) = E(π̂t−1 − as) (st − as − bsπ̂t−1) = 0
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for s = π̂, ŷ, R̂, where |bπ| < 1, bπ ̸= 0, and E denotes the unconditional expectations
operator. This restriction implies: as = 0.57

Suppose an RPE exists and that agents update their estimates of (ay, aR, aπ) according
to (22) with bπ, bR, by fixed to their RPE values. Substituting expectations into the system
(5), (6) and (7) gives the first-order system:

Zt = QZt−1 + ϵ̃t. (91)

where Zt = (π̂t, R̂t, ŷt, aπ,t, aR,t, ay,t, π̂t−1, . . . , π̂t−L+2)
T . For stability, the roots of P (λ) =

Det[Q − λIL+4] must be inside the unit circle. One can show that for sufficiently large γ

(i.e. in the limit κ → 0), P (λ) = −(1 − c∗ωβψy

(1−β)(y∗π∗σ+c∗βψy)
− λ)λL+1(λ − (1 − ω))2. Hence,

we have stability for small κ and small ω if ψy > 0. To show stability for small κ and small
ω when ψy = 0, we compute the total differential of P (λ):

∂P

∂λ
dλ+

∂P

∂κ
dκ = 0

=⇒ dλ

dκ
= −∂P

∂κ
/
∂P

∂λ
.

Evaluated at λ = 1 and κ = ψy = 0 we have

=⇒ dλ

dκ
=
c∗ω(π∗ − Lβψp)

(β − 1)2(π∗)2σ
< 0

Therefore, an RPE is stable under constant gain learning about the intercept term, assum-
ing an RPE exists and κ sufficiently small. We note that same result holds if ψp > π∗/(βL).

Now consider (ii). In the limit γ → 0, ŷt = gyĝt where gy is a complicated function of
deep structural parameters and therefore (5), (6) and (7) reduces to:58

R̂t =
∞∑
j=1

βj
(
β−2π̂et+j − R̂e

t+j

)
+ ϵt, (92)

R̂t =
ψp
π∗

L−1∑
i=0

π̂t−i, (93)

where ϵt is proportional to the i.i.d government spending shock g̃t, and ψy = 0 is assumed
for simplicity. Suppose the PLM:

π̂t = aπ + bππ̂t−1, (94)

R̂t = aR + bRπ̂t−1, (95)

which implies

π̂et+j = (1− bj+1
π )aπ/(1− bπ) + bj+1

π π̂t−1,

R̂e
t+j = aR + bR(1− bjπ)aπ/(1− bπ) + bRb

j
ππ̂t−1.

57Mathematica routine available on request.
58Here, as with other flexible price results, we assume agents learn the exogenous process for output, i.e.

ŷt = gy ĝt which implies ŷet+j = 0 for all j ≥ 1.
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Under the PLM, (94)-(95), a restricted perceptions equilibrium (RPE) of (92)-(93) is given
by coefficients (aπ, aR, bπ, bR) which satisfy the least-squares orthogonality restriction

Eπ̂t−1 (πt − aπ − bππ̂t−1) = E(π̂t−1 − aπ) (π̂t − aπ − bππ̂t−1) = 0,

Eπ̂t−1

(
R̂t − aR − bRπ̂t−1

)
= E(π̂t−1 − aR)

(
R̂t − aR − bRπ̂t−1

)
= 0,

where |bπ| < 1, bπ ̸= 0, and E denotes the unconditional expectations operator. This

restriction implies: aR = aπ = 0, bR = b2π
β
.59

Suppose an RPE exists and that agents update their estimates of (aR, aπ) according to
(22) with bπ and bR fixed to their RPE values. Substituting expectations (22) and (93)
into (92) yields:

π̂t = dπaπ,t + dRaR,t + eππ̂t−1 −
L−1∑
i=2

π̂t−i + ϵ̃t

= (eπ + dπω)π̂t−1 + (−dπbπω − dRbRω − 1)π̂t−2

+ dRωR̂t−1 + dπ(1− ω)aπ,t−1 + dR(1− ω)aR,t−1 −
L−1∑
i=3

π̂t−i + ϵ̃t, (96)

where

eπ =
π∗bπ(bπβ

−1 − bRβ)

ψp(1− βbπ)
− 1,

dπ =
π∗

ψp(1− bπ)

(
β−1 − βbR

1− β
− bπ (β

−1bπ − βbR)

1− βbπ

)
,

dR = − π∗β

ψp(1− β)
.

Introduce the notation Zt = (π̂t, R̂t, aπ,t, aR,t, π̂t−1, . . . , π̂t−L+2)
T . Modifying the system

gives
Zt = QZt−1 + ϵ̂t. (97)

For stability, the roots of P (λ) = Det[Q − λIL+2] must be inside the unit circle. One can
show that in the limit ω → 0

P (λ) = −(1− λ)2λP̃ (λ)

Thus, some roots of P (λ) are outside of the unit circle if any root of P̃ (λ) is outside the
unit circle where

P̃ (λ) = λL−1 +

(
1− π∗b2π

βψp

)
λL−2 +

L−3∑
k=0

λk (98)

where 0 < π∗b2π
βψp

< 1 under the Taylor Principle with π∗ ≥ 1. The preceding equation has

the following form

Q(λ) = λn + (1− c)λn +
n−2∑
k=0

λk

59Mathematica routine available on request. Given aR = aπ = 0, we can show that R̂t = B(bR)π̂t−1+rϵt

where r is a scalar, B(bR) =
ψp

π∗ (eπ+1) and eπ is defined in (96) below. Therefore, E(R̂tπ̂t−1)
E(π̂tπ̂t)

= B(bR) = bR

since aR = 0. Solving B(bR) = bR for bR gives bR =
b2π
β .
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where c ∈ (0, 1) and n = L−1. We can assess stability following the Schur-Cohn conditions
presented in the proof of Proposition 1(ii).

If n is even, then

∣∣D±
3

∣∣ =

∣∣∣∣∣∣
 1 0 0

1− c 1 0
1 1− c 1

±

 0 0 1
0 1 1
1 1 1

∣∣∣∣∣∣
−2c+ c2 or − c2

so
∣∣D+

3

∣∣ < 0 and
∣∣D−

3

∣∣ < 0, which implies instability.
Then consider the case n is odd.∣∣D±

2

∣∣ = ∣∣∣∣( 1 ±1
1− c± 1 1± 1

)∣∣∣∣ = (1± 1)∓ (1− c± 1) = c or − c.

So there is instability as
∣∣D−

2

∣∣ < 0. So overall there is instability for L ≥ 4. We note
that the result holds for any ψp > 0. In particular, the proposition holds with the weaker
restriction ψp > π∗/(βL).

D.4 Proof of Proposition 3

It is seen that only lags of inflation appear in structural model (76). Its coefficient matrices
Ai take the form given in (77), and the resulting temporary equilibrium is V AR(L − 1).
Let zt = (R̂t, π̂t)

T . The temporary equilibrium system (unprojected ALM) takes the form

zt = A1zt−1 + ...+AN−1zt−(N−1) + N̂zt−N + ...+ N̂zt−(L−1) + wt, (99)

where wt is iid random shock. The relevant characteristic polynomial is H̃(λ) = λL−1H(λ),
where

H(λ) = λL−1 −
N−1∑
i=1

ai22λ
L−1−i +

L−1∑
i=N

λL−1−i,

The temporary equilibrium system is stationary if the roots of H(λ) are inside the unit
circle. The Schur-Cohn conditions are the relevant stability conditions. According to
Proposition 5.1 in Elaydi (2005), condition (iii) is necessary for H(λ) to have all of its
roots inside the unit circle. This condition is stated in terms of the inners of the following
matrices

B±
L−2 =


1 0 0 · · · 0

−a122 1 0 · · · 0
−a222 −a122 1 · · · 0

...
...

. . . . . .
...

bL−3 bL−4 · · · −a122 1

±


0 0 · · · 0 1
0 0 · · · 1 bL−2
...

...
...

...
0 1 · · · b4 b3
1 bL−2 · · · b3 −a222

 .

where bk = −ak22 if N > k or where b = 1 if N ≤ k. The smallest inner of B±
L−2 is either∣∣B±

1

∣∣ = 1± 1 = 2 or 0
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if L is odd or∣∣B±
2

∣∣ =

∣∣∣∣( 1 0
−a122 1

)
±
(

0 1
1 bL−2

)∣∣∣∣
=

∣∣∣∣( 1 1
1− a122 1 + bL−2

)
or

(
1 −1

−a122 − 1 1− bL−2

)∣∣∣∣
= bL−2 + a122 or − (bL−2 + a122).

where bL−2 = −a(L−2)22 or −1 if L is even. So there is always a zero inner, which implies
that not all roots are inside the unit circle.60

D.5 Proofs of Lemma 4 and Proposition 5

D.5.1 Proof of Lemma 4

We continue from the beginning of Section 4, so introduce the notation for the PLM:

X̃R,t = ÃR,0 + ÃRX̃R,t−1, (100)

where

ÃR =


A1 A2 · · · AR−1

I 0 · · · 0
...

. . . · · · ...
0 0 I 0

 and ÃR,0 =


A0

0
...
0

 .

Note that in (23) the number of lags that arise structurally is L− 1, which is smaller than
R − 1 so the additional lags arise purely in the PLM. Stacking the system into first order
form gives the temporary equilibrium system of equations

X̃R,t = K̃ +
∑∞

i=1
βiM̃RX̃

e
R,t,t+i + Ñ2X̃R,t−1 + Zt, (101)

where Zt is a vector of i.i.d. shocks. The system is written out as
X̂t

X̂t−1
...

X̂t−(R−2)

 =


K
0
...
0

+
∑∞

i=1


βiM 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0




X̂e
t,t+i

0
...
0



+Ñ2


X̂t−1

X̂t−2
...

X̂t−(R−1)

+ Zt,

where the matrix

Ñ2 =



N̂ · · · N̂ 0 · · · 0
I · · · 0 0 · · · 0
...

. . . · · · · · · ...
...

0 · · · I 0 · · · 0

0 · · · · · · . . .
...

...
0 · · · 0 · · · I 0


60It is not necessary to consider E-stability as the unprojected ALM is not stationary.
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where the lags of the AIT policy rule are in the top left corner of Ñ2: the top left has L−1
matrices N̂ .

Iterating the PLM (100):

X̃e
R,t,t+i = (I + ÃR + ...+ ÃiR)ÃR,0 + Ãi+1

R X̃R,t−1.

After substituting the PLM into the ALM (101), the temporary equilibrium mapping
PLM→ALM can be simplified to

ÃR →
∑∞

i=1
βiM̃RÃ

i+1
R + Ñ2, (102)

ÃR,0 →
∑∞

i=1
βiM̃R(I + ÃR + ...+ ÃiR)ÃR,0 + K̃. (103)

Assuming that the eigenvalues of ÃR and βÃR are inside the unit circle, the mapping
PLM→ALM simplifies to

ÃR → βM̃RÃ
2
R

(
I − βÃR

)−1

+ Ñ2 (104)

ÃR,0 → K̃ + βM̃R

(
I − ÃR

)−1
(
(1− β)−1I − Ã2

R

(
I − βÃR

)−1
)
ÃR,0, (105)

where Ñ2 is as above. One computes

βM̃RÃ
2
R =


βM 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0





A2
1 + A2 A1A2 + A3 · · · · · · A1AR−2 + AR−1 A1AR−1

A1 A2 · · · · · · AR−2 AR−1

I 0 · · · · · · 0 0

0 I
. . . · · · ...

...
...

...
. . . 0

...
...

0 0 · · · I 0 0



=


βM(A2

1 + A2) βM(A1A2 + A3) · · · βM(A1AR−2 + AR−1) βMA1AR−1

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


For mapping (104) define

F (ÃR) = βM̃RÃ
2
R(I − βÃR)

−1, (106)

which is 3(R− 1)× 3(R− 1) matrix.
Next, consider equation (106) and the REE equation from (104): F (ÃR) + Ñ2 = ÃR.

Multiplying both sides by (I − βÃR) we get the equation

βM̄RÃ
2
R = (ÃR − Ñ2)(I − βÃR) (107)
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which can be written as
βM(A2

1 + A2) βM(A1A2 + A3) · · · βM(A1AR−2 + AR−1) βMA1AR−1

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0



=



A1 − N̂ A2 − N̂ · · · AL−1 − N̂ AL · · · AR−1

0 0 · · · · · · 0 · · · 0
0 0 · · · · · · 0 · · · 0
...

...
. . . · · · · · · · · · ...

0 0 · · · . . . 0 · · · 0
...

... · · · · · · . . . · · · ...
0 0 · · · · · · 0 0 0



∗



I − βA1 −βA2 · · · −βAL−1 · · · −βAR−2 −βAR−1

−βI I · · · 0 · · · 0 0

0 −βI . . . 0 · · · 0 0

0 0
. . . . . .

...
...

...
...

... · · · . . . . . .
...

...

0 0 · · · 0
. . . I 0

0 0 · · · 0 · · · −βI I


.

We get the equations for the REE

β(M + I)A2
1 − (I + βN̂)A1 + N̂ = −β(M + I)A2 + βN̂

[β(M + I)A1 − (I + βN̂)]A2 + N̂ = −β(M + I)A3 + βN̂
...

[β(M + I)A1 − (I + βN̂)]AL−1 + N̂ = −β(I +M)AL (108)

[β(M + I)A1 − (I + βN̂)]AL = −β(I +M)AL+1

...

[β(M + I)A1 − (I + βN̂)]AR−2 = −β(M + I)AR−1

[β(M + I)A1 − (I + βN̂)]AR−1 = 0.

Generically, for values of A1 in the last line of (108) the matrix β(M + I)A1− (I +βN̂)
is invertible. It follows that AR−1 = 0 and

[β(M + I)A1 − (I + βN̂)]AR−2 = 0.

Continuing this way we get
AL = ... = AR−1 = 0

so the fixed point in learning with overparameterized PLM is an MSV solution.
We note that the first equation of (108) yields

A2 = −A2
1 + β−1(M + I)−1(I + βN̂)A1 − (M + I)−1(β−1 − 1)N̂ , (109)
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so A2 is quadratic in A1 and A3 is linear in A2 and in the product A1A2 etc. Thus, in
general there can be multiple solutions that take the MSV form.

The same argument can be applied in the case of flexible prices.

D.5.2 Proof of Proposition 5:

Denote the REE as (ÃR, ÃR,0) = (ĀR, Ā0). The E-stability conditions take the usual form
(see (63)) with R− 1 lags in the PLM

DT (ĀR) =
((
I − βĀR

)−1
βĀ2

R

)T
⊗
(
M̃R

(
I − βĀR

)−1
β
)
+

I ⊗
(
M̃R

(
I − βĀR

)−1
βĀR

)
+ ĀTR ⊗

(
M̃R

(
I − βĀR

)−1
β
)

=
((
I − βĀR

)−1
βĀ2

R + ĀR

)T
⊗
(
M̃R

(
I − βĀR

)−1
β
)

+I ⊗
(
M̃R

(
I − βĀR

)−1
βĀR

)
DT (Ā0) = βM̃R

(
I − ĀR

)−1
(
(1− β)−1I − Ā2

R

(
I − βĀR

)−1
)
,

and these are evaluated at the MSV solution with the overparametrization parameters
equal to zero. Thus the key matrices are now

ÃR = ĀR =


Ā1 · · · ĀL−1 · · · 0
I · · · 0 · · · 0
...

. . .
... · · · ...

0 · · · I · · · 0
0 · · · · · · I 0

 and

I − βĀR =



I − βĀ1 −βĀ2 · · · −βĀL−1 · · · 0
−βI I · · · 0 · · · 0
...

. . . . . .
...

...
...

...
...

. . . . . .
...

...
0 0 · · · −βI I 0
0 0 · · · 0 −βI I


.

We partition ĀR and I − βĀR so that ALL and DLL contain the corresponding model
without overparameterization.

ĀR =

(
ALL 0
BL CL

)
, where ALL =


Ā1 Ā2 · · · ĀL−1

I 0 · · · 0
...

. . .
...

...
0 · · · I 0



BL =

 0 · · · I
...

...
...

0 · · · 0

 , CL =


0 · · · · · · 0
I · · · · · · 0
...

. . . · · · ...
0 · · · I 0

 and so Ā2
R =

(
A2
LL 0

BLALL + CLBL C2
L

)
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and

I − βĀR =

(
DLL 0
DL EL

)
, where DLL =


I − βĀ1 −βĀ2 · · · −βĀL−1

−βI I · · · 0
...

. . . . . .
...

0 · · · −βI I



DL = −βBL and EL =


I · · · · · · 0

−βI . . . · · · 0
...

. . . . . .
...

0 · · · −βI I

 .

Here ALL and DLL are 3(L− 1)× 3(L− 1) submatrices of ĀR and I − βĀR (alternatively,
2(L− 1)× 2(L− 1) submatrices under flexible prices).

Using the rule for inverse of partitioned matrices we have(
I − βĀR

)−1
=

(
D−1
LL 0

−E−1
L DLD

−1
LL E−1

L

)
.

Consider the first stability condition is that the eigenvalues of DT (ÃR) have real parts less
than 1. Computing the different terms in DT (ÃR), one obtains

DT (ÃR)

=

(
((βD−1

LLALL + I)(ALL))
T β[−(E−1

L DLD
−1
LLA

2
LL)

T + (E−1
L (BLALL + CLBL))

T ] +BT
L

0 β(E−1
L C2

L + CL)
T

)
⊗
(
βM̃D−1

LL 0
0 0

)
+ I ⊗

(
βM̃D−1

LLALL 0
0 0

)
.

Introducing the matrix notations βM̃D−1
LL = (βmij), βM̃D−1

LLALL = (βnij), ((βD
−1
LLALL +

I)(ALL))
T = (lij) and (βE−1

L C2
L + CL)

T = (sij), it can be shown that DT (ÃR) is block
triangular with diagonal blocks

BB1 =



(
l11(βmij) + (βnij) 0

0 0

)
· · ·

(
l1k(βmij) 0

0 0

)
...

...(
lk1(βmij) 0

0 0

)
· · ·

(
lkk(βmij) + (βnij) 0

0 0

)


and

BB2 =



(
s11(βmij) + (βnij) 0

0 0

)
· · ·

(
s1q(βmij) 0

0 0

)
...

...(
sq1(βmij) 0

0 0

)
· · ·

(
sqq(βmij) + (βnij) 0

0 0

)
 .

The eigenvalues of the block BB2 consist of zeroes and roots of the equation

|BB2 − λI| =

∣∣∣∣∣∣∣
(s11(βmij) + (βnij)− λI) · · · (s1q(βmij))

...
...

(sq1(βmij)) · · · (sqq(βmij) + (βnij)− λI)

∣∣∣∣∣∣∣ .
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and to compute the eigenvalues of BB1, we have

|BB1 − λI| =

∣∣∣∣∣∣∣
(l11(βmij) + (βnij)− λI) · · · (l1k(βmij))

...
...

(lk1(βmij)) · · · (lkk(βmij) + (βnij)− λI)

∣∣∣∣∣∣∣ .
It can be noted that the matrices (lij), (mij) and (nij) depend only on matrices ALL and
DLL, whereas (sij) depends on the matrices AL, BL, DL and EL. In the case of correctly
specified PLM

DT (ÃR) = BB1 =
(
((βD−1

LLALL + I)(ALL))
T
)
⊗
(
βM̃D−1

LL

)
+ I ⊗

(
βM̃D−1

LLALL

)
so the weak E-stability condition is that the roots of equation |BB1 − λI| = 0 have real
parts less than one. For strong E-stability there is an additional condition that the roots
of |BB2 − λI| = 0 must have real parts less than one. It is important to note that the
condition for strong E-stability depends on the existence of high order lags of the PLM.61

Then consider the E-stability condition for the intercept, i.e. DT (Ā0) evaluated at
Ā0, ĀR

DT (Ā0) = βM̃R

(
I − ĀR

)−1
(
(1− β)−1I − Ā2

R

(
I − βĀR

)−1
)
,

so the E-stability condition is that the eigenvalues of matrix

DT (Ā0) =

(
βM̃(I − ALL)

−1((1− β)−1I − A2
LLD

−1
LL) 0

0 0

)
have real part less than 1. It is seen that this is just the weak E-stability condition for the
intercept.

D.6 Proof of Proposition 7

The dynamic model is given by a linearized system of the form (18) and (19) where the
interest rate is now (27). In this proof, we set ψp = ψp/(

∑L−1
i=0 µ

i) (i.e. we write the
averaging constant explicitly in the interest rate rule, but this detail is not essential for
the results). Again in the limit γ → 0 the first equation is independent from the rest of
the system and output expectations ŷet are convergent. Separating the equation for ŷet , the
state variables are x̃t = (π̂t, R̂t)

T and the linearized system is of the form (84) but the
coefficient matrices M̃ and Ñi change to

M̃ = −(DF̃x)
−1DF̃xe =

(
π∗(

∑L−1
i=0 µi)

ψpβ(1−β) −βπ∗(
∑L−1

i=0 µi)
ψp(1−β)

−1
(β−1)β

β
β−1

)
,

Ñi = −(DF̃x)
−1DF̃xi =

(
−µi 0
0 0

)
, i = 1, ..., L− 1.

and the system is now
Z̃t = Q̃2Z̃t−1, (110)

61This feature is in line with the analysis of conditions for weak and strong E-stability for simple models
discussed in Evans and Honkapohja (2001), chapter 9.
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where Z̃t is defined in the proof of Proposition 1 (ii), but Q̃2 incorporates the new forms
of M̃ and Ñi in Q̃. Consider the characteristic polynomial of Q̃2 of (110)

det[Q̃2 − λI2L] = 0. (111)

Given that the second columns of Ñi are zero vectors, the determinant in (111) has L− 2
roots equal to zero. Then analyzing the remaining (L+2) dimensional determinant, again
it turns out that there is one more zero root and one root equal to 1 − ω. Factoring out
these, we are left with a polynomial of degree L. Introducing more familiar notation n = L,
the polynomial is

P2(n, ω, λ) = λn + b(ω)λn−1 + a(ω)[µλn−2...+ µn−2λ] + (a(ω)µn−1 − µn), (112)

where µ is the weight parameter in (27),

a(ω) =
ω

1− β
+ µ− 1, b(ω) = a(ω)− ω

1− β
b1 with b1 =

π∗ (∑n−1
i=0 µ

i
)

βψp

and where π∗ < βψp and n ≥ 2 are assumed. We again consider how any root varies
as ω varies from 0 to small values dω > 0 and require that in this variation the root is
continuously a root of the characteristic polynomial. If ω → 0we have a(ω) → µ − 1 and
b(ω) → µ− 1, so the characteristic equation becomes

(1− λ)(λn−1 + µλn−2 + µ2λn−3 + ...+ µn−2λ+ µn−1). (113)

There is one root of unity. For the other roots one can apply a generalization of the classic
Enerström-Kakeya theorem in Gardner and Govil (2014), Theorem 3.6, stating that the
other roots of the polynomial in (113) satisfy |λ| < µ < 1.

Then consider the root of 1. Assume now a small perturbation ω > 0. By continuity
of eigenvalues the n − 1 roots that are approximate to the roots of the latter polynomial
in (113) remain inside the unit circle. To determine whether the unit root contributes to
stability we compute the partial derivatives

∂P2

∂λ
= nλn−1 + (n− 1)b(ω)λn−2 + a(ω)[µ(n− 2)λn−3...+ µn−2],

∂P2

∂ω
= +b′(ω)λn−1 + a′(ω)[µλn−2 + ...+ µn−2λ] + a′(ω)µn−1.

At ω = 0 and λ = 1 we have

∂P2

∂λ
=

1− µn

1− µ
> 0,

∂P2

∂ω
=

1

1− β

(
1− π∗∑n−1

k=0 µ
k

βψp
+ µ

1− µn−1

1− µ

)
> 0,

since a′(0) = (1− β)−1 and b′(0) = (1− β)−1(1− b1). Then taking the differential of (112)
and requiring

∂P2

∂ω
dω +

∂P2

∂λ
dλ = 0 =⇒ ∂λ

∂ω
< 0.

So for small ω > 0 the real root corresponding to limit 1 is inside the unit circle.
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Next consider the case: γ > 0. In the linearization we get

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
− ψp

π∗(
∑L−1

i=0 µi)
1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

β
β−1

κ 0 0

0 0 0


DFx−i

=

 0 0 0
0 0 0

0 − µiψp

π∗(
∑L−1

i=0 µi)
0

 , i = 1, ..., L− 1,

where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0.

It follows that

M = −(DFx)
−1DFxe =

y∗(β2κψp(y∗−ḡ)/(
∑L−1

i=0 µi)+(β−1)(π∗)2σ)
⅁2

π∗y∗(ḡ−y∗)
⅁2

β2π∗y∗(y∗−ḡ)
⅁2

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁2

κπ∗y∗(ḡ−y∗)
⅁2

β2κπ∗y∗(y∗−ḡ)
⅁2

π∗σ((β−1)π∗ψy−κψpy∗/(
∑L−1

i=0 µi))
⅁2

(ḡ−y∗)(π∗ψy+κψpy∗)
⅁2

β2(y∗−ḡ)(π∗ψy+κψpy∗)
⅁2

 ,

Ni = −(DFx)
−1DFxi =

0 µiβψpy∗(ḡ−y∗)(β−1)

(
∑L−1

i=0 µi)a
0

0 µiβκψpy∗(ḡ−y∗)(β−1)

(
∑L−1

i=0 µi)a
0

0 µiπ∗σψpy∗(β−1)

(
∑L−1

i=0 µi)a
0

 , i = 1, ..., L− 1.

where

⅁2 = (β − 1)
(
π∗(βψy(y

∗ − ḡ) + π∗σy∗) + βκψpy
∗(y∗ − ḡ)/

(∑L−1

i=0
µi
))

< 0.

The system is now like (83)
Zt = Q2Zt−1,

where Zt is as before in Proposition 1, but Q2 incorporates the new forms of M and Ni.
Introduce the notation xt = (ŷt, π̂t, R̂t) etc. Modifying the system yields

Zt = ( xet xt xt−1 xt−2 · · · xt−(L−2) )T

Q2 =



(1− ω)I3 ωI3 0 · · · 0 0
(1− ω)M ωM +N1 N2 · · · NL−2 NL−1

0 I3 0 · · · 0 0
0 0 I3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I3 0


.
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For stability, the roots of P (λ) = Det[Q2 − λI3L] must be inside the unit circle. One can
show that

P (λ) = λ2L−2(1− ω − λ)P̃ (λ)

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λL−1 + hµ

L−2∑
k=0

µL−2−kλk)

where

h =
βκψpy

∗(y∗ − ḡ)

βκψpy∗(y∗ − ḡ) + (βπ∗ψy(y∗ − ḡ) + (π∗)2σy∗)
(∑L−1

i=0 µ
i
) ∈ (0, 1)

The polynomial has two unit roots. For the other roots one can apply a generalization of
the classic Enerström-Kakeya theorem in Gardner and Govil (2014), Theorem 3.6, stating
that the roots of the second polynomial in P̃ (λ) satisfy |λ| < µ < 1.

Therefore, the roots of P (λ) are inside the unit circle if ∂λ/∂ω < 0 evaluated at ω = 0
and λ = 1. To evaluate the derivative, we consider the Taylor series expansion of P̃ (λ) up
to second order at point (λ0, ω0). Let (dλ, dω) = (λ, ω)− (λ0, ω0). Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
Now

P̃ω(λ0, ω0) = 0

P̃λ(λ0, ω0) = 0

so we get the approximation

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
.

Now impose
P̃ (λ, ω)− P̃ (λ0, ω0) = 0

to compute the derivative of the implicit function. So we have

P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)
dω2

2
+ P̃λλ(λ0, ω0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(λ0, ω0)

P̃λω(λ0, ω0)
+
P̃λλ(λ0, ω0)

P̃λω(λ0, ω0)

(
dλ

dω

)2
)
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Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ωω(1, 0) = (−1)L
2(y∗ − ḡ)((1− β)βπ∗ψy + κy∗(βψp − π∗))

(β − 1)2
(
βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/

(∑L−1
k=0 µ

i
)
+ (π∗)2σy∗

)
P̃λλ(1, 0) = (−1)L

2 (βπ∗ψy(y
∗ − ḡ) + βκψpy

∗(y∗ − ḡ) + (π∗)2σy∗)

βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/
(∑L−1

k=0 µ
i
)
+ (π∗)2σy∗

P̃λω(1, 0) = (−1)L
κy∗(y∗ − ḡ)(π∗ − 2βψp) + (2− β)βπ∗ψy(ḡ − y∗)− (1− β)(π∗)2σy∗

(β − 1)
(
βπ∗ψy(y∗ − ḡ) + βκψpy∗(y∗ − ḡ)/

(∑L−1
k=0 µ

i
)
+ (π∗)2σy∗

)
One can show that P̃ωω(1, 0) > 0, P̃λλ(1, 0) > 0, P̃λω(1, 0) > 0 if L is even and P̃ωω(1, 0) < 0,
P̃λλ(1, 0) < 0, P̃λω(1, 0) < 0 if L is odd. Therefore, ∂λ/∂ω < 0 and we have stability for
κ ≥ 0 and small ω.

D.7 Proof of Proposition 8

In the linearization (31) we get62

DFx =

 1 0 β(y∗−g)
π∗σ

−κ 1 0

−ψy

y∗
−wcψp

π∗ 1



DFxe =

 −1 −(g−y∗)
π∗σ(β−1)

β2(g−y∗)
π∗σ(β−1)

βκ
β−1

0 0

0 0 0


DFcb =

 0
0

−(1− wc)ψp/π
∗


where

κ =

ν

(
(ν−1)σy∗(y∗−ḡ)−σ−1

ν
− (ν−1)(y∗−ḡ)−σ

ν
+ (ϵ+1)y∗

ϵ+1
α −1

α2

)
γ(2π∗ − 1)

≥ 0

62The proof applies to the slightly generalized case in which the interest rate rule can also respond to
output.
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if σ > (y∗ − ḡ)/y∗. It follows that

M = −(DFx)
−1DFxe =

y∗(wcβ2κψp(y∗−ḡ)+(β−1)π∗2σ)
⅁3

π∗y∗(ḡ−y∗)
⅁3

β2π∗y∗(y∗−ḡ)
⅁3

κ(−π∗)(β2ψy(y∗−ḡ)+π∗σy∗)
⅁3

κπ∗y∗(ḡ−y∗)
⅁3

β2κπ∗y∗(y∗−ḡ)
⅁3

π∗σ((β−1)π∗ψy−wcκψpy∗)
⅁3

(ḡ−y∗)(π∗ψy+wcκψpy∗)
⅁3

β2(y∗−ḡ)(π∗ψy+wcκψpy∗)
⅁3

 ,

Ncb = −(DFx)
−1DFcb =

(wc−1)βψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

(wc−1)βκψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

(wc−1)π∗σψpy∗

(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)



N =

 0 (wc−1)βψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

0

0 (wc−1)βκψpy∗(ḡ−y∗)
(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)

0

0 (wc−1)π∗σψpy∗

(βπ∗ψy(y∗−ḡ)+wcβκψpy∗(y∗−ḡ)+(π∗)2σy∗)
0


where ⅁3 = (β − 1) (βπ∗ψy(y

∗ − ḡ) + wcβκψpy
∗(y∗ − ḡ) + (π∗)2σy∗) < 0.

Introduce the notation xt = (ŷt, π̂t, R̂t) etc. Modifying the system (19), (31), and the
linearization of (29) yields yields

Zt = QZt−1, where (114)

Zt = ( xt xet π̂cbt )T

Q =

 ωM + wcN (1− ω)M (1− wc)Ncb

ωI3 (1− ω)I3 03×1

0 wc 0 · · · 1− wc

 .

For stability, the roots of P (λ) = Det[Q − λI7] must be inside the unit circle. One can
show that

P (λ) = λ3(1− ω − λ)P̃ (λ).

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle. In the limit ω → 0, we have

P̃ (λ) = (1− λ)2(λ− µ)

where µ =
(1−wc)(βπ∗ψy(y∗−ḡ)+(π∗)2σy∗)

(y∗−ḡ)(βπ∗ψy+βκwcψpy∗)+(π∗)2σy∗
<

(βπ∗ψy(y∗−ḡ)+(π∗)2σy∗)
(y∗−ḡ)(βπ∗ψy)+(π∗)2σy∗

= 1. Therefore, the roots

of P (λ) are inside the unit circle if ∂λ/∂ω < 0 evaluated at ω = 0 and λ = 1. To evaluate
the derivative, we consider the Taylor series expansion of P̃ (λ) up to second order at point
(λ0, ω0). Let (dλ, dω) = (λ, ω)− (λ0, ω0). Then

P̃ (λ, ω) = P̃ (λ0, ω0) + P̃λ(λ0, ω0)dλ+ P̃ω(λ0, ω0)dω +

P̃λλ(λ0, ω0)
dλ2

2
+ P̃λω(λ0, ω0)dλdω + P̃ωω(λ0, ω0)

dω2

2
+Q,

where subscripts denote partial derivatives and Q is a remainder.
Evaluating the partial derivatives at (λ0, ω0) = (1, 0) we have

P̃ω(1, 0) = 0,

P̃λ(1, 0) = 0,
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and imposing
P̃ (λ, ω)− P̃ (λ0, ω0) = 0,

we get the approximation

P̃λω(1, 0)dλdw + P̃ωω(1, 0)
dω2

2
+ P̃λλ(1, 0)

dλ2

2
= 0

or
dλ

dω
=

−1

2

(
P̃ωω(1, 0)

P̃λω(1, 0)
+
P̃λλ(1, 0)

P̃λω(1, 0)

(
dλ

dω

)2
)

Further, we have

P̃ωω(1, 0) =
2wc(y

∗ − ḡ)((β − 1)βπ∗ψy + κπ∗y∗ − βκψpy
∗)

(1− β)−1 (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λλ(1, 0) = −2wc (βπ
∗ψy(y

∗ − ḡ) + βκψpy
∗(y∗ − ḡ) + (π∗)2σy∗)

(βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

P̃λω(1, 0) =
wcy

∗ ((β − 1)(π∗)2σ + (β − 2)βπ∗ψy + κπ∗y∗ − 2βκψpy
∗)

(1− β) (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

− ḡwc((β − 2)βπ∗ψy + κπ∗y∗ − 2βκψpy
∗)

(1− β) (βπ∗ψy(y∗ − ḡ) + βκwcψpy∗(y∗ − ḡ) + (π∗)2σy∗)

One can show that P̃ωω(1, 0) < 0, P̃λλ(1, 0) < 0, P̃λω(1, 0) < 0 if βψp > π∗. Therefore,
∂λ/∂ω < 0 and we have stability for small w and κ > 0.

In part (ii) with γ = 0 the dynamics of output expectations do not depend on the rest
of the system and can be shown to be locally convergent. The linearization (31) becomes

M̃ ≡ −(DF̃x)
−1DF̃xe =

(
π∗

wcψpβ(1−β) − βπ∗

wcψp(1−β)
1

β(1−β) − β
(1−β)

)
and

Ñ ≡ −(DF̃x)
−1DF̃xi . =

(
wc−1
wc

0

0 0

)
and

Ñcb ≡ −(DF̃x)
−1DF̃xi . =

(
wc−1
wc

0

)
, i = 1, ..., L− 1.

Introduce the notation x̃t = (π̂t, R̂t) etc. Modifying the system (19), (31) and the
linearization of (29) yields

Z̃t = Q̃Z̃t−1, where (115)

Z̃t = ( xt xet π̂cbt )T

Q̃ =

 ωM̃ + wcÑ (1− ω)M̃ (1− wc)Ñcb

ωI2 (1− ω)I2 02×1

wc 0 · · · 1− wc

 .

For stability, the roots of P (λ) = Det[Q̃ − λI5] must be inside the unit circle. One can
show that

P (λ) = λ2(1− ω − λ)P̃ (λ),
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where

P̃ (λ) = λ2 +
βwcψp(β + ω − 1)− π∗ω

(1− β)βwcψp
λ+

π∗ω(1− wc)

(1− β)βwcψp
.

Thus, the roots of P (λ) are inside the unit circle if and only if the roots of P̃ (λ) are inside
the unit circle.

Let a0 = π∗ω(1−wc)
(1−β)βwcψp

and a1 = βwcψp(β+ω−1)−π∗ω
(1−β)βwcψp

. The roots of P̃ (λ) are inside the unit

circle if and only if the Schur-Cohn condition, |a1| < 1+a0 < 2, is satisfied. The Schur-Cohn

condition is satisfied if ψp > max[π
∗(ω/wc)(1−wc)

(1−β)β , R̄] and ω < (1−β)βwcψp

βwcψp−π∗ if ψp > π∗/(βwc) or

ω > 0 otherwise.

D.8 Proof of Proposition 9

Recall that agents’ PLM for z ∈ {π̂, R̂} is zt = az + bzRt−1. This implies:

R̂e
t+j =

1− bj+1
R

1− bR
aR + bj+1

R R̂t−1

π̂et+j = aπ + bπR̂
e
t+j−1

for j ≥ 0. Substituting expectations into (81) and (82) yields the ALM:

R̂t =
β−1

1− β
aπ +

(
β−1bπ +

β−1bπ − 1

1− bR

(
β

1− β
− βb2R

1− βbR

))
aR

+
β−1bπ − βbR
1− βbR

bRR̂t−1

π̂t =
π∗

wcψp
R̂t + π∗wc − 1

wcψp
R̂t−1

The T-map is given by:

aR → β−1

1− β
aπ +

(
β−1bπ +

β−1bπ − 1

1− bR

(
β

1− β
− βb2R

1− βbR

))
aR

aπ → π∗

wcψp

(
β−1

1− β
aπ +

(
β−1bπ +

β−1bπ − 1

1− bR

(
β

1− β
− βb2R

1− βbR

))
aR

)
bR → β−1bπ − βbR

1− βbR
bR

bπ → π∗

wcψp

(
β−1bπ − βbR
1− βbR

bR

)
+ π∗wc − 1

wcψp

Computing the E-stability conditions for the unique bounded REE (which is characterized
by (aπ, aR, bπ, bR) = (0, 0, wc−1

wcψp
π∗, 0)) from the T-map in the usual manner, Proposition 9

follows.
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Figure I A,B: Stability of target steady state with overparameterized PLM

70



50 100 150 200 250 300
k

0.995

1.000

1.005

π

50 100 150 200 250 300
k

0.940

0.942

0.944

0.946

0.948

0.950

y

50 100 150 200 250 300
k

1.000

1.005

1.010

1.015

1.020

R

Figure II: Escape of inflation, output and interest rate from liquidity trap under AIT with
transparency (blue) and IT (red)
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Figure III: Domain of escape to target steady state
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Figure IV: Escape of inflation, output and interest rate from liquidity trap under asym-
metric AIT (blue), IT (red) and symmetric AIT (yellow)
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Figure A.1: Domain of escape for IT

Figure A.2: Domain of escape for IT with MSV beliefs
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Figure A.3: Inflation under PLT (blue), AIT with L = 8 (orange) and AIT with L = 32
(red), sticky price model

Figure A.4: Inflation under PLT (blue), AIT with L = 8 (orange) and AIT with L = 32
(red), flexible price model
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