
E-stability vis-à-vis Determinacy in
Regime-Switching Models

Nigel McClung∗

2 July 2020
(Link to Most Recent Draft)

Abstract

This paper examines E-stability, determinacy, and indeterminacy in a gen-
eral class of regime-switching models with lagged endogenous variables. Using
determinacy conditions from Cho (2016, 2020), our first result extends McCal-
lum (2007) to models with time-varying parameters: the unique mean-square
stable equilibrium is E-stable when agents use current information and one-
period-ahead decision rules. Further, we address existence and E-stability of
non-fundamental solutions, and highlight distinctive properties of E-stable so-
lutions of indeterminate regime-switching models. In particular, we find that
indeterminate New Keynesian models with recurring interest rate peg regimes
can admit an (Iteratively) E-stable MSV solution. In special cases, the Iterative
E-stability conditions coincide with the Long Run Taylor Principle.

JEL Classification: C62, D83, D84, E42, E52

Keywords: Markov-Switching, Determinacy, E-stability, Adaptive Learning

∗Research Economist, Bank of Finland. Email: Nigel.McClung@bof.fi. The views ex-
pressed in this paper do not reflects the views of the Bank of Finland. I am very grateful to
Seonghoon Cho, Yunjong Eo, David Evans, George Evans, Chris Gibbs, Bruce McGough,
and Jeremy Piger for helpful discussions and comments. This paper supercedes a previous
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1 Introduction

Rational expectations (RE) models admit multiple equilibria, and economists fre-

quently use two criteria to select an equilibrium. The first criterion (“determinacy”)

emphasizes model restrictions that ensure the existence of a unique rational expecta-

tions equilibrium (REE). Alternatively, the adaptive learning approach of Evans and

Honkapohja (2001), among many others, uses “E-stability” to select equilibria that

emerge as the outcome of an econometric learning process involving imperfectly in-

formed agents. These two criteria are distinct, but there is value in understanding the

connections between them. If we can isolate conditions under which determinacy and

E-stability both obtain, then we can dispense with sometimes burdensome E-stability

computations. When the two criteria fail to select the same equilibrium, however, it

should complicate our understanding of that equilibrium’s reasonableness. For exam-

ple, we might choose to reject an E-unstable determinate equilibrium on the grounds

that nearly-rational agents cannot generate the predicted REE dynamics. Addition-

ally, we might give extra consideration to an E-stable equilibrium of an indeterminate

model.

This paper examines connections between determinacy, indeterminacy and E-

stability in a general class of Markov-switching rational expectations models with

lagged endogenous variables. Our contributions are threefold. First, we demonstrate

that a set of tractable conditions for determinacy from Cho (2020) imply the E-

stability of the unique mean-square stable rational expectations equilibrium if agents

know current endogenous variables and use one-period-ahead rules, such as Euler

equations, in their decision-making.1 This contribution extends McCallum (2007),

which finds that determinacy implies E-stability in a general class of linear rational

expectations models, to environments with time-varying parameters. Additionally,

this result extends the E-stability analysis of Branch, Davig, and McGough (2013),

1Throughout this the paper, we use “equilibrium” to refer to a mean-square stable or boundedly
stable solution of the RE model under study.
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who show that a generalization of the Long Run Taylor Principle–which is distinct

from the model’s determinacy conditions–implies the E-stability of the MSV solution

in a restricted class of models that does not include lagged variables. Thus, this paper

is the first to show when determinacy (in the mean-square stable sense) is sufficient

for E-stability in regime-switching DSGE models, and importantly, the first paper

to study E-stability in a general class of regime-switching economies with lagged

endogenous variables.2

Second, this paper addresses the existence of E-stable solutions of indeterminate

regime-switching DSGE models. We find that E-stable non-fundamental (NF) or

“sunspot” equilibria exist whenever an E-stable minimal state variable (MSV) solu-

tion also exists. These E-stable NF solutions depend on extraneous exogenous vari-

ables, including arbitrary lags of the Markov regime. Surprisingly, we also find that

indeterminate regime-switching models can have Iterative E-stable (“IE-stable”) solu-

tions when agents have current information and use one-period-ahead decision rules,

whereas indeterminate linear DSGE models do not admit IE-stable solutions under

analogous assumptions about agents’ information sets, decision rules, and subjective

forecasting models. It has been argued that IE-stable solutions have special proper-

ties: Evans and Guesnerie (1993, 2005) and Guesnerie (2002) associate IE-stability

with “eductive” stability, or the ability of rational agents to coordinate on a REE us-

ing common knowledge of rationality, and Gibbs and McClung (2019) use IE-stability

to determine when DSGE models exhibit forward guidance puzzles in the sense of Del

Negro, Giannoni and Patterson (2012) and Carlstrom, Fuerst, and Paustian (2015).

Thus, our paper spotlights interesting equilibrium properties that distinguish some E-

stable solutions of indeterminate Markov-switching DSGE models from all learnable

equilibria of indeterminate linear DSGE models.

Third, we present IE-stable solutions of indeterminate New Keynesian models

2As with linear DSGE models, many empirically-rich Markov-switching DSGE models include
lagged endogenous variables. E.g. see Bianchi (2012), Bianchi and Ilut (2017), Bianchi and Melosi
(2017), Chen, Leeper, and Leith (2018).
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with persistent interest rate pegs. If we interpret these interest rate peg regimes as

recurring zero lower bound (ZLB) episodes, these exercises furthermore reveal one

way to construct a model with stable expectations at the ZLB.3 In special cases, the

model’s IE-stability conditions coincide with the Long Run Taylor Principle (LRTP)

of Davig and Leeper (2007).

This paper is related to a vast literature that studies the relationship between

determinacy and E-stability in linear models, including the above mentioned work

by McCallum. Ellison and Pearlman (2011) studies “saddlepath learning”, a set of

RE-consistent restrictions in agents’ learning rules that extend McCallum (2007)’s

central result to linear DSGE models with lagged information. They find IE-stable

indeterminate solutions when agents are saddlepath learning, but IE-stable indeter-

minate solutions do not exist in linear models under the more standard assumptions

we consider here. Bullard and Eusepi (2014) study determinacy and learnability4

in linear models under general assumptions about agents’ information sets and de-

cision rules. They show that determinacy is not generally sufficient for E-stability;

McCallum (2007)’s insight is sensitive to details of the learning specification. This

paper examines whether McCallum’s insight is robust to DSGE model structure and

solution concept.

Relatively little work studies determinacy and E-stability in regime-switching

models. Most notably, Branch, Davig, and McGough (2013) studies adaptive learning

in a class of purely forward looking Markov-switching models (i.e. a model without

lagged endogenous variables). We build on their path-breaking work in several di-

mensions. First, we study a more general model class that allows for lagged endoge-

3A large adaptive learning literature associates interest rate pegs and the ZLB with E-instability.
E.g. see Howitt (1992), Evans, Guse and Honkapohja (2008), Evans and McGough (2018) and
Honkapohja and Mitra (2019), among many others. Mertens and Ravn (2014) and Christiano,
Eichenbaum, and Johannsen (2018) both consider learnability of equilibria involving one-time tran-
sient ZLB regimes, but our analysis allows for recurring ZLB regimes and considers a wide range of
calibrations.

4This papers uses “E-stable”, “learnable”, and ”expectationally stable” interchangeably.
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nous variables. Thus, this paper’s insights are applicable to empirically-rich regime-

switching DSGE models that feature endogenous persistence arising from features

such as habit formation, inflation indexation, capital accumulation, inertial monetary

policy, debt-financed government expenditures, and so on. Second, as argued above,

we study the relationship between determinacy and E-stability.5 Third, we comment

on the existence and E-stability of non-fundamental (“sunspot”) solutions, whereas

Branch, Davig and McGough (2013) provide examples of E-stable solutions under

special assumptions we discuss below. Finally, we show that regime-switching learn-

ing explains stable expectations in economies with persistent interest rate pegs. Some

recent related work includes Ozden and Wouters (2020), which studies models with

recurring monetary policy regime change and learning agents who employ misspeci-

fied linear forecasting models, and Foerster and Matthes (2020), who study Bayesian

learning in regime-switching models.

We also contribute to a literature that studies solutions of Markov-switching

DSGE models. Farmer, Waggoner, and Zha (2011), Maih (2015), Cho (2016), and

Foerster, Rubio-Ramirez, Waggoner and Zha (2016) provide solution techniques that

build on the pioneering works of Davig and Leeper (2007), Svensson and Williams

(2007), and Farmer, Waggoner, and Zha (2009, 2010). Cho (2016) and Cho (2020)

provide conditions for the uniqueness of mean-square stable solutions of Markov-

switching models, while Barthelemy and Marx (2019) provide conditions for the

uniqueness of bounded solutions. We not address the learnability of bounded so-

lutions of regime-switching models, but we discuss some connections between our

work and the determinacy conditions developed by Barthelemy and Marx (2019).

The paper is organized as follows. Section 2 introduces connections between de-

terminacy and E-stability, with Proposition 1-2 presenting our first contributions.

Section 3 examines the learnability of indeterminate solutions; Propositions 3-4 and

5Reed (2015) also considers determinacy and E-stability, but only in a class of purely forward-
looking models.

4



Corollary 4 present new findings. Section 4 examines the Iterative E-stability of

solutions to indeterminate New Keynesian models with recurring passive monetary

regimes Section 5 concludes.

2 Determinacy and E-stability

Here we characterize determinacy and E-stability properties of a general class of mod-

els. First, we reproduce the main finding of McCallum (2007): a unique equilibrium is

always E-stable when agents observe contemporaneous endogenous variables and use

one-period-ahead forecasting rules. We then turn to a more general class of Markov-

switching DSGE (MS-DSGE) models and show that determinacy conditions in Cho

(2016) and Cho (2020) imply E-stability of the MSV solution under assumptions that

are analogous to assumptions in McCallum (2007).

2.1 Linear DSGE Models

Research on the relationship between determinacy and E-stability often examines

widely-used models of the following form:

xt = MÊtxt+1 +Nxt−1 +Qut (1)

where xt is a n× 1 vector of endogenous variables, Êt denotes (possibly) non-rational

expectations conditioned on time-t information, and ut is am×1 covariance-stationary

process that follows:

ut = ρut−1 + εt

Following Cho (2016, 2020), we express a rational expectations solution to (1) as a

linear combination of a minimal state variable (MSV) solution that depends on xt−1
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and ut and a non-fundamental solution component, wt, such that:

xt = Ωxt−1 + Γut + wt (2)

wt = FEtwt+1 (3)

where the coefficient matrices satisfy the following conditions:

Ω = (In −MΩ)−1N (4)

Γ = (In −MΩ)−1Q+ FΓρ

F = (In −MΩ)−1M (5)

We refer to (2) as the MSV solution when wt = 0 for all t. Note that Γ and F are

uniquely determined by Ω. Hence, we can index any MSV solution to (1) by the

equilibrium coefficient matrix Ω. Similarly, any non-fundamental (NF) solution is a

linear combination of a MSV solution and wt and therefore we can think of NF or

“sunspot” solutions as being associated to a corresponding MSV solution.6 We can

further characterize the set of MSV solutions, S, as follows:

S = {Ω ∈ Cn×n|r(Ω1) ≤ r(Ω2) ≤ . . . ≤ r(ΩN)} (6)

where r(A) denotes the spectral radius of A and N denotes the number of solutions

to the fixed point problem (4). McCallum (2007) refers to Ω1 as the minimum-of-

modulus or MOD solution, and it is defined to be Ω1 ∈ S such that r(Ω1) =min r(Ω)

for all Ω in S . In linear models of the form (1), we may employ a variety of techniques

to identify the MOD solution, and its existence and uniqueness can be deduced from

various properties of the model’s eigenvalue-eigenvector system.7 We explicitly refer

to the MOD solution in this section because a unique equilibrium, when it exists,

6Section 3 discusses sunspot representations in greater detail.
7For example, see Uhlig (1997), Klein (2000), Sims (2002).
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is always a MOD solution. As it turns out, we can decide whether a model (1) is

determinate simply by identifying the MOD solution.

For the MOD solution to be the unique stable equilibrium, three things need to

be true. First, r(Ω1) < 1 renders the solution non-explosive.8 Second, the condi-

tion r(F 1) < 1, where F 1 is defined as in (5), generates an explosive expectational

difference equation for all non-fundamental solutions satisfying (3). Therefore this

condition precludes coordination on sunspots of the form (3) in the MOD equilib-

rium. Finally, 1 ≤ r(Ω2) ≤ . . . ≤ r(ΩN) ensures that all MSV solutions, except

for the MOD solution, are explosive. In principle, these conditions can be verified if

one identifies S. Such an exercise may prove costly and is inefficient relative to the

familiar routines developed by Blanchard and Kahn (1980), Sims (2002) and other

well-known works. McCallum (2007) and Cho (2020) provide the following succinct

conditions for determinacy in linear models:

Theorem 1 Consider the model (1) and suppose the MOD solution, Ω1, exists and

is real. (1) is a determinate model if and only if:

1. r(Ω1) < 1

2. r(F 1) ≤ 1

Proof: See Proposition 3 in Cho (2020). �

Corollary 1 The model (1) is indeterminate if r(F 1) > 1 and r(Ω1) < 1. In this

case, there may exist other MSV solutions, Ω 6= Ω1, such that r(Ω) < 1 and r(F ) > 1.

Corollary 1 clarifies that r(F ) > 1 is necessary for any MSV solution of an inde-

terminate model (1) satisfying r(Ω) < 1, including the MOD solution r(Ω1) < 1.9

8Here we use to “non-explosive” to mean “forward stable” or dynamically stable. We do not use
“explosive” or “non-explosive” to refer to expectational stability.

9See also Appendix D, which proves that if r(Ω1) < 1 then r(F ) > 1 for any MSV solution, Ω,
of model (1) where r(Ω) < 1 and Ω is not the MOD solution.

7



The determinacy conditions in Theorem 1 straightforwardly imply the E-stability

of the unique MSV solution (MOD solution) given by Ω1. To show this, we begin

by replacing rational agents with learning agents who believe the economy evolves

according to a perceived law of motion (PLM):10

xt = a+ bxt−1 + cut (7)

We assume that all agents in the economy have the same PLM, and observe all

contemporaneous variables. Stated precisely:

Assumption A. All agents estimate a PLM of the form (7).

Assumption B. Agents observe all contemporaneous variables at time-t (i.e.

xt, ut are in agents’ time-t information sets).

In what follows, we let Êtxt+1 denote the subjective expectations formed by the

learning agents. Since these agents do not know the objective probability distributions

for the model’s variables and form subjective expectations using their PLM, we can

express this expectations term as:

Êtxt+1 = a+ bxt + cρut

It cannot be assumed a priori that agents’ PLM coincides with the actual law of

motion (ALM) that governs the equilibrium dynamics in the economy. The ALM is

given by a version of (1) which replaces rational expectations with the aforementioned

subjective expectations, yielding:

xt = (In −Mb)−1Ma+ (In −Mb)−1Nxt−1 + (In −Mb)−1 (Mcρ+Q)ut (8)

10If agents learn in real-time using PLM, (7), then we may express the PLM as xt = at−1 +
bt−1xt−1 + ct−1ut to denote the fact that agents forecast at time-t using their most recent forecasts
of (a, b, c) which depend on time-t−1 information. For exposition’s sake, we suppress the subscripts
in (at−1, bt−1, ct−1).
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The ALM implies a mapping from the set of beliefs Φ = (a, b, c)′ to the actual equi-

librium coefficients of the model, T (Φ). This mapping is referred to as the T-map. In

our model, T (Φ) = ((In −Mb)−1Ma, (In −Mb)−1N, (In −Mb)−1 (Mcρ + Q))′. To

derive the ALM and corresponding T-map, we assumed that agents make decisions

that depend only on expectations of xt+1. In other words, we assume learning agents

use “one-period-ahead” decision rules that could arise, e.g., from the first-order con-

ditions in agents’ dynamic optimization problems. The one-period-ahead approach

is discussed in Evans and Honkapohja (2001), is extensively used in the adaptive

learning literature, and moreover, the rational expectations decision rules assume

this one-period-ahead form. However, a large literature advocates for an alternative

approach in which learning agents’ decisions depend on long-horizon expectations.11

This paper focuses on settings with one-period-ahead decision rules.

Assumption C. Agents use one-period-ahead decision rules (i.e. the ALM is

given by (8)).

If agents’ beliefs are consistent with (2), then the ALM becomes (2). That is, if

(a, b, c) = (0n×1,Ω,Γ) = Φ̄′, then T (Φ̄) = Φ̄. This is another way of stating that ra-

tional agents possess true beliefs about the equilibrium mappings in the economy; ra-

tional agents believe in perceived laws of motions that are identical to the actual laws

of motion. Of course even if our learning agents “learn” the REE coefficients, they

will never truly be rational insofar as they will never learn the economy’s structure.

That is, the learnability of a REE does not by itself justify the behavioral primitives

underlying rational expectations. If agents somehow learn the REE, however, it does

suggest that there’s something about the economy’s structure which guides bound-

edly rational agents to the easy-to-model outcomes predicted by rational expectations

analysis. To better understand those stabilizing aspects of an economy’s structure

we ask the question: when can agents learn to behave like rational agents? In other

11E.g. see Preston (2005), Eusepi and Preston (2011), Evans, Honkapohja and Mitra (2013), and
Bullard and Eusepi (2014) for more on the merits of learning with infinite-horizon decision rules.
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words, what moves (a, b, c) to (0n×1,Ω,Γ) and under what conditions will such an

evolution in beliefs occur? Evans and Honkapohja (2001) shows that a given REE

is “E-stable”, or, in other words, attainable as the limiting outcome of a real-time

learning process if the E-stability conditions in Theorem 2 are satisfied.

Theorem 2 Consider model (1), and suppose Assumptions A-C hold. Then a REE,

Φ̄′ = (0n×1,Ω,Γ), is said to be E-stable or stable under learning if the real parts of

the following three matrices are less than one:

1. Ω′ ⊗ F

2. F

3. ρ′ ⊗ F

Proof: see Appendix A. �

We are finally in a position to restate the main result from McCallum (2007).

Theorem 3 Suppose Assumptions A-C hold. If (1) is determinate, then the unique

equilibrium is E-stable.

Proof: Determinacy requires r(Ω1) < 1 and r(F 1) < 1.12 E-stability conditions 2

and 3 follow immediately from r(F 1) < 1 and r(ρ) < 1. Finally, r(Ω1′ ⊗ F 1) =

r(Ω1)r(F 1) < 1. Hence, E-stability condition 1 follows from determinacy. �

In sum, McCallum (2007) assesses E-stability and determinacy in models of the

form (1) by stating both determinacy and E-stability conditions in terms of matrix

functions of the MOD solution coefficients. Thus, the MOD solution concept offers

a useful bridge between two of the most important equilibrium selection criteria in

macroeconomics. In a class of MS-DSGE models that generalizes (1), Cho (2020)

12We abstract from the case r(F 1) = 1
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proposes a MOD solution concept, and a corresponding method that assesses deter-

minacy in said model class using matrix functions of the MOD solution coefficients.

Our contribution then establishes E-stability of the unique equilibrium of a MS-DSGE

model by studying properties of the MOD solution. We show this in section 2.2.

2.2 Markov-switching DSGE Models and Main Proposition

This paper examines a general class of Markov-switching DSGE models that assume

the form:

xt = Et(M(st, st+1)xt+1) +N(st)xt−1 +Q(st)ut (9)

where xt is a n× 1 vector of endogenous variables, ut is a m× 1 vector of exogenous

variables that follows

ut = ρ(st)ut−1 + εt

where st is a S-state Markov Chain, pij = Pr(st+1 = j|st = i) is the (i, j)-th element

of the transition probability matrix, P , ρ(st) is a diagonal matrix and εt is a white

noise process. By assumption, ut is a mean-square stable process. In this paper,

we use the mean-square stability concept, which is widely-used in the MS-DSGE

literature. Intuitively, a n-dimensional discrete-time process, such as the RE solution

to (9), is mean-square stable if its first and second moments are well-defined as t

goes to infinity. More thorough descriptions of mean-square stability can be found in

Costa, Fragoso, and Marques (2005), Farmer, Waggoner, and Zha (2009), and Cho

(2016). From Theorem 1 in Cho (2016), any rational expectations solution to (9) can

be written as a linear combination of a minimal state variable solution that depends
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on xt−1, st, and ut and a non-fundamental solution component, wt, as:

xt = Ω(st)xt−1 + Γ(st)ut + wt (10)

wt = Et (F (st, st+1)wt+1) (11)

F (st, st+1) =

(
In −

S∑
j=1

pstjM(st, j)Ω(j)

)−1

M(st, st+1)

Cho (2016) provides a tractable method for obtaining solutions of the form (10),

which we refer to as a MSV solution when wt = 0. As before, we can think of any NF

solution as being associated to a given MSV solution insofar as any sunspot solution

can be cast as a linear combination of a MSV solution and extrinsic process, wt. Cho

(2016) also provides sufficient conditions for the existence of a unique mean-square

stable MSV solution and non-existence of stable NF solutions of the form wt. Finally,

Cho (2020) shows that closely-related conditions, which we provide in Theorem 4,

are not just sufficient but also necessary for ensuring the existence of a unique mean-

square stable equilibrium (10). Cho (2020) furthermore generalizes the MOD solution

concept to MS-DSGE models (i.e. the MOD solution is the most mean-square stable

MSV solution). The MOD solution of (9), denoted as Ω1(st) for st = 1, . . . , S, serves

the same purpose in our analysis as the MOD solution of (1): the MOD tells us

everything about a model’s determinacy properties. We refer interested readers to

those papers, and Theorem 4 restates the determinacy conditions from Cho (2016,

2020).

Theorem 4 Consider the model (9) and suppose the MOD solution, Ω1(st), exists

and is real-valued. (9) is a determinate model if and only if:

1. r(Ψ̄Ω1⊗Ω1) < 1

2. r(ΨF 1⊗F 1) ≤ 1
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where

Ψ̄Ω1⊗Ω1 =


p11Ω1(1)⊗ Ω1(1) . . . pS1Ω1(1)⊗ Ω1(1)

...
. . .

...

p1SΩ1(S)⊗ Ω1(S) . . . pSSΩ1(S)⊗ Ω1(S)



ΨF 1⊗F 1 =


p11F

1(1, 1)⊗ F 1(1, 1) . . . p1SF
1(1, S)⊗ F 1(1, S)

...
. . .

...

pS1F
1(S, 1)⊗ F 1(S, 1) . . . pSSF

1(S, S)⊗ F 1(S, S)



Proof: see Appendix C in Cho (2020). �

Corollary 2 The model (9) is indeterminate if r(ΨF 1⊗F 1) > 1 and r(Ψ̄Ω1⊗Ω1) < 1.

In this case, there may exist other MSV solutions, Ω(st) 6= Ω(st)
1 for some st, such

that r(Ψ̄Ω⊗Ω) < 1 and r(ΨF⊗F ) > 1.

Corollary 2 clarifies that r(ΨF⊗F ) > 1 is necessary for any MSV solution of an

indeterminate model (9) satisfying r(Ψ̄Ω⊗Ω) < 1, including the MOD solution.13 The-

orem 4 presents the Markov-switching DSGE analogue of the determinacy conditions

for the linear model presented in Theorem 1.

We now derive the Markov-switching analogue of the adaptive learning model

developed in section 2.1. In our MS-DSGE setting, agents’ PLM assumes the form:

xt = a(st) + b(st)xt−1 + c(st)ut (12)

Notice that agents use a PLM that shares the functional form of the MSV solution. We

also assume that agents observe all contemporaneous variables including the Markov

state, st, when forming expectations at time t and that agents are homogeneous.

13See also Appendix D, which proves that if r(Ψ̄Ω1⊗Ω1) < 1 then r(ΨF⊗F ) > 1 for any MSV
solution, Ω(st), of model (1) where r(Ψ̄Ω⊗Ω) < 1 and Ω(st) is not the MOD solution.
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Assumption A’. All agents estimate a PLM of the form (12).

Assumption B’. Agents observe all contemporaneous variables at time-t (i.e.

xt, ut, st are in agents’ time-t information sets).

In this environment, subjective expectations, Êtxt+1, can be expressed as follows:

Êt (M(st, st+1)xt+1) = Ê(M(st, st+1)xt+1|st = i;xt, ut)

=
S∑
j=1

pijM(i, j) (a(j) + b(j)xt + c(j)ρ(j)ut))

Substituting Êt(M(st, st+1)xt+1) into (9) yields the ALM:

xt =

(
I −

S∑
j=1

pijM(i, j)b(j)

)−1( S∑
j=1

pijM(i, j)a(j)

)

+

(
I −

S∑
j=1

pijM(i, j)b(j)

)−1

N(i)xt−1

+

(
I −

S∑
j=1

pijM(i, j)b(j)

)−1( S∑
j=1

pijM(i, j)c(j)ρ(j) +Q(i)

)
ut (13)

If we define B = (b(1) b(2) · · · b(S)) and Ξ(i, B) =
(
I −

∑S
j=1 pijM(i, j)b(j)

)
then

the state-contingent T-map becomes:

a(i) → Ξ(i, B)−1

S∑
j=1

pijM(i, j)a(j)

b(i) → Ξ(i, B)−1N(i)

c(i) → Ξ(i, B)−1

(
S∑
j=1

pijM(i, j)c(j)ρ(j) +Q(i)

)

As before, we assume that learning agents use one-period-ahead decision rules in order

to derive the ALM and associated T-map:
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Assumption C’. Agents use one-period-ahead decision rules (i.e. the ALM is

given by (13)).

What happens if agents learn to behave like rational agents in a REE, Ω(st) ( such

that (a(st), b(st), c(st)) = (0n×1,Ω(st),Γ(st)) for all st)? Cho (2016) shows that

Ω(i) = Ξ(i,Ω)−1N(i) and Γ(i) = Ξ(i,Ω)−1
(∑S

j=1 pijM(i, j)Γ(j)ρ+Q(i)
)

for i =

1, . . . , S where Ω = (Ω(1), . . . ,Ω(S)). It immediately follows that (a(st), b(st), c(st))

= (0n×1,Ω(st),Γ(st)) is a fixed point of the T-map, just as a REE in the model class

(1) is always a fixed point of the associated T-map. As in section 2.2., we must grap-

ple with the stability of beliefs around these REE fixed points by asking: when will

(a(st), b(st), c(st))→ (0n×1,Ω(st),Γ(st)) for all st?

To answer this question we assume that agents estimate S within-regime linear

systems. We specifically focus on algorithms of the form:

Φ(st)ts = Φ(st)ts−1 + ψtsR(st)
−1
ts zt(xt − Φ(st)

′
ts−1zt) (14)

R(st)ts = R(st)ts−1 + ψts(ztz
′
t −R(st)ts−1) (15)

where zt = (1, x′t−1, u
′
t)
′ and ts is either the number of realizations of state st up

until time t, or ts is simply equal to t.14 (14) is a special case of the recursive

conditional least squares (RCLS) algorithm developed in LeGland and Mevel (1997)

for estimation in environments with hidden Markov states. Specifically, the RCLS

converges to (14) if we set R(st) = I for all st, define ψst appropriately,15 and add

st to agents’ time-t information sets. It should also be noted that this algorithm

is identical to the recursive least squares (RLS) algorithm, which is the workhorse

estimation algorithm in the adaptive learning literature, when S = 1. We therefore

view this recursive learning scheme as a natural extension of RLS to environments

14We define ts in this flexible manner in order to make the learning algorithm more general.
Basic results in this paper do not depend on the definition of ts, provided that standard regularity
assumptions concerning the asymptotic behavior of the gain parameter are satisfied.

15E.g., we let ψst = t−α where 0 < α ≤ 1
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with Markov-switching parameters. That is, our approach attempts to be in keeping

with the spirit of Evans and Honkapohja (2001). McClung (2019) and other ongoing

work more fully explores the properties of these algorithms in models with hidden

states.

Because agents are learning Φ via the recursives algorithms (14) and (15), it is

clear that beliefs may only converge to REE (i.e. potential convergence points, Φ̄,

must satisfy Φ̄ = T (Φ̄) where T denotes the T-map). We therefore follow Branch,

Davig, and McGough (2013) and apply the stochastic approximation approach in

Evans and Honkapohja (2001) to our regime-switching environment. That is, we

derive E-stability conditions from the T-map under the following assumptions:

Proposition 1 Consider model (8), and suppose Assumptions A’-C’ hold. Then a

REE, Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)) for all st, is said to be E-stable or stable under

learning if the real parts of the following three matrices are less than one:

1. ΨΩ′⊗F

2. ΨF

3. Ψρ′⊗F

where

ΨΩ′⊗F =


p11Ω(1)′ ⊗ F (1, 1) · · · p1SΩ(1)′ ⊗ F (1, S)

...
. . .

...

pS1Ω(S)′ ⊗ F (S, 1) · · · pSSΩ(S)′ ⊗ F (S, S)



ΨF =


p11F (1, 1) . . . p1SF (1, S)

...
. . .

...

pS1F (S, 1) . . . pSSF (S, S)


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Ψρ′⊗F =


p11ρ(1)′ ⊗ F (1, 1) . . . p1Sρ(S)′ ⊗ F (1, S)

...
. . .

...

pS1ρ(1)′ ⊗ F (S, 1) . . . pSSρ(S)′ ⊗ F (S, S)


Proof: see Appendix B. �

These conditions are the Markov-switching DSGE analogue to the conditions pre-

sented in McCallum (2007) and Theorem 2. Unsurprisingly, these conditions are

identical to the aforementioned E-stability conditions for linear DSGE models when

S = 1. Having derived the relevant E-stability conditions, we are now in a position

to present Proposition 2, which is the main contribution of this section.

Proposition 2 Suppose Assumptions A’-C’ hold. If (9) is determinate, then the

unique equilibrium is E-stable.

Proof: see Appendix C. �

In linear DSGE models of the form (1), a variety of popular techniques are used

to detect the existence and uniqueness of equilibrium.16 Generally, it is more chal-

lenging to obtain MSV solutions in Markov-switching DSGE models, though popular

techniques have been developed by Farmer, Waggoner, and Zha (2011), Maih (2015),

Cho (2016), and Foerster, Rubio-Ramirez, Waggoner, and Zha (2016), among others.

Applications in the remaining sections of this paper use the forward method in Cho

(2016) to obtain MOD solutions.

2.2.1 Barthelemy and Marx (2019)

Barthelemy and Marx (2019) provide necessary and sufficient conditions for determi-

nacy in the bounded stability sense for a related class of MS-DSGE models. While

this section argues that the unique mean-square stable solution selected by Cho (2016)

16See, for example: Blanchard and Kahn (1980), Uhlig (1997), Sims (2002).
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and Cho (2020) is E-stable, one could be interested in the E-stability of the unique

bounded solution. Barthelemy and Marx (2019) confirms that a unique equilibrium

assumes the form (9) (with wt = 0) when it exists, and this means that our E-

stability conditions apply. However, their approach also involves the computation of

a limit which depends on an infinite number of different Markov state histories, and

this fact makes it difficult to analytically characterize the relationship between their

determinacy conditions and the E-stability conditions presented in this paper.

Because we have not proved that determinacy in the bounded stability sense

implies E-stability, an interesting question remains: can a unique equilibrium in

the bounded stability sense (i.e. a MSV solution selected by the Barthelemy and

Marx (2019) criterion) be E-unstable under our assumptions about information and

decision rules? If such an equilibrium, Ω∗(st), exists, then the following is true:

re(ΨΩ∗′⊗F ∗) > 1 or re(ΨF ∗) > 1. If re(ΨΩ∗′⊗F ) > 1 or re(ΨF ∗) > 1 then r(ΨΩ∗⊗Ω∗) > 1

or r(ΨF ∗⊗F ∗) > 1. Hence, an E-unstable unique bounded equilibrium is (a) not mean-

square stable; or (b) permits mean-square stable sunspot solutions. Regarding (a), a

mean-square stable solution has a well-defined first and second moments, and a mean-

square unstable solution does not. In practice, we should expect bounded processes

to have well-defined first and second moments, but should we encounter a unique

bounded equilibrium that is not mean-square stable, we might consider it a poorly-

behaved solution due to its inability to deliver well-defined first and second moments

for the model’s variables. Similarly regarding (b) we might be worried about sunspot

indeterminacy if non-fundamental solutions with well-defined first and second mo-

ments exist. Apart from these cases, which may give us reasons to further scrutinize

the underlying equilibrium, and which we have not found in practice, the main mes-

sage of this section holds: when a MS-DSGE model admits a unique equilibrium, it

is stable under learning.
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3 Indeterminacy and E-stability

Section 2 presents a framework in which E-stability is necessary for determinacy,

but it is well-known that E-stability is not sufficient for determinacy.17 This section

studies E-stability of indeterminate equilibria of (1) and of (9), and highlights some

distinctive properties of E-stable equilibria of indeterminate regime-switching models.

3.1 Linear DSGE Models

To study the learnability of indeterminate equilibria of (1), which include both MSV

solution(s) (i.e. (2) with wt = 0) and non-fundamental (NF) or “sunspot” solutions

(i.e. (2) with wt 6= 0), we need to specify wt. One can represent sunspot solutions in

many ways, and we elect to use the “common factor” representation:

wt = Λwt−1 + V V ′ηt (16)

where the value of Λ is restricted by the model (1), and model equilibrium under

study, (2) (e.g. see Evans and McGough (2005, 2005b)), V is an orthonormal matrix,

and ηt is some arbitrary Martingale difference sequence (MDS). This paper stud-

ies common factor representations because other popular representations, such as

the “general form” representation examined by Evans and McGough (2005, 2005b,

2011), are widely associated with E-instability. We note that the different repre-

sentations of non-fundamental processes encode different informational assumptions;

common-factor representations assume that learning agents observe and consequently

condition expectations on wt. Equations (2) and (16) also make it clear that the com-

mon factor representation associates a particular MSV solution to each NF solution.

Accordingly, we let NFΦ̄′ denote any dynamically stable NF solution associated to

17E.g. McCallum (2007) shows that E-stable solutions exist in indeterminate models of the form
(1) when Assumptions A-C hold. Evans and McGough (2005, 2005b) also study some of the inde-
terminate, E-stable solutions we consider in this section.
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MSV REE, Φ̄′ = (0n×1,Ω,Γ). Finally, if one NF solution, NFΦ̄′ , exists, then infinitely

many NF solutions exist because ηt can be any MDS. We have now introduced the

bare minimum number of details about NF solutions that we need for our analysis;

interested readers can see Lubik and Schorfheide (2003, 2004), Evans and McGough

(2005, 2005b), or Cho (2020) for more on the derivation of (16).

From (3), wt = FEtωt+1, which imposes the restriction wt = 0 if the model (1) is

determinate (such that r(F ) < 1). It is also well-known that non-zero, dynamically

stable (i.e. r(Λ) < 1) NF solutions of (1) exist if and only if r(F ) > 1. To study

whether these solutions are stable under learning, we assumes agents use a common

factor PLM (“CF-PLM”) of the form

CF-PLM: xt = a+ bxt−1 + cut + dwt (17)

where it is tacitly assumed that wt is observed and Λ is known.18 Following the

logic of section 2.1, we can show that T (Φ) = ((In −Mb)−1Ma, (In −Mb)−1N,

(In −Mb)−1 (Mcρ+Q), d)′ where Φ = (a, b, c, d)′. The mapping from beliefs, d, to the

ALM given by T (d) = d is a standard result in the adaptive learning literature.19 Since

the T-map is otherwise unaffected by the inclusion of wt in agents’ PLM, we can show

that for indeterminate cases, a NF solution is E-stable precisely when the associated

MSV solution is also E-stable.20 This last statement is sensitive to assumptions about

decision rules, information, etc.

Theorem 5 Consider model (1) and REE, Φ̄′ = (0n×1,Ω,Γ), and suppose Assump-

tions A-C hold. If

18If wt is exogenous and observable, then agents can almost surely learn Λ over time.
19It is standard to write T (d) = d because multiples of NF processes are NF processes. E.g. if wt

is a sunspot, then so is T (d)wt.
20Appendix A. provides techniques needed to show this result. E-stability obtains if the real parts

of the eigenvalues of matrices 1-3 in Theorem 2 and the identity matrix are less than or equal to 1.
In keeping with the literature, we add the condition “or equal” when sunspots are under study. E.g.
see Evans and McGough (2005, 2005b).
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1. re(F ) < 1 < r(F )

2. re(Ω⊗ F ) < 1

3. re(ρ⊗ F ) < 1

then the following is true: (a) (1) is indeterminate and NFΦ̄′ exists; (b) MSV REE,

Φ̄′ = (0n×1,Ω,Γ), is E-stable; (c) NFΦ̄′ is E-stable if agents use CF-PLM, (17).

Proof: From Corollary 1, indeterminacy requires r(F ) > 1 > r(Ω) for any dy-

namically stable REE of (1). E-stability of the MSV and NF solutions requires

re(ρ′ ⊗ F ) < 1 re(F ) < 1 and re(Ω⊗ F ) < 1 by Theorem 2 and the main text. �

Condition 1 of Theorem 5 is particularly important: E-stability and indeterminacy

requires re(F ) < 1 < r(F ). These inequalities hold in two different cases:

Case 1. 0 < re(F ) < 1 where the maximum of the eigenvalues of F is complex-

valued. In this case, there must be at least two eigenvalues of F greater than one

in modulus, which means that the degree of indeterminacy, m, exceeds or equals

two. Many indeterminate New Keynesian models features m = 1, making this

case irrelevant for a class of simple monetary macro models.21

Case 2. re(F ) < −1. Bullard and Mitra (2002) study this case and find

indeterminate REE of New Keynesian models with forward-looking interest

rate rules that react strongly to the output gap.

Net of cases 1 and 2, which are arguably uncommon in applied work, a dynamically

stable REE of (1) is E-stable if and only if r(F ) < 1 and r(Ω ⊗ F ) < 1.22 The

conditions r(Ω⊗F ) < 1 and r(F ) < 1 are known as Iterative E-stability (IE-stability)

21E.g. Evans and McGough (2005) find that m = 2 in some New Keynesian models, but they do
not find learnable equilibria for these cases.

22If r(F ) < 1, r(Ω) < 1, and Ω is real-valued, like any economically reasonable solution, then
re(Ω⊗ F ) = r(Ω⊗ F ) < 1 and re(ρ⊗ F ) < 1.
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conditions, and they are a stronger case of E-stability, which require the eigenvalues

of F , Ω ⊗ F , and ρ ⊗ F to be lie inside the unique circle, as opposed to having real

parts that are less than one. Some straightforward algebra shows that IE-stability

and determinacy are equivalent criteria for the model class (1) under the assumptions

stated in Theorems 1-3 and 5.23

Corollary 3 Consider (1) and suppose Assumptions A-C hold. Then an REE, Φ̄′ =

(0n×1,Ω,Γ), is Iteratively E-stable if and only if (1) is determinate.

IE-stable REE possess some important economic properties. First, Evans and

Guesnerie (1992, 2005) and Guesnerie (2002) associate IE-stability with REE that

are “eductively” stable, or rationalizable as the outcome a mental learning process in

which rational agents coordinate an equilibrium using common knowledge considera-

tions alone. Second, Gibbs and McClung (2019) show that all IE-unstable MSV REE

of (1) are prone to forward guidance puzzles a la Del Negro, Giannoni and Patterson

(2015), while all IE-stable REE are not. Theorem 5 and Corollary 1 should therefore

raise concerns that any E-stable REE of an indeterminate model (1) is eductively

unstable (i.e. not rationalizable), and prone to forward guidance puzzles.

3.2 Markov-switching DSGE Models

Now consider (9). As before, we are interested in studying the learnability of inde-

terminate equilibria, which include MSV solutions (i.e. (10) with wt = 0) and NF

solutions associated to these MSV solutions (i.e. (10) with wt 6= 0), and so we study

common factor representations following Farmer, Waggoner, and Zha (2009) and Cho

23We note that Ellison and Pearlman (2011) find IE-stable equilibria of indeterminate linear
models under similar informational assumptions. However, their results only hold when agents are
saddlepath learning, as explained in the introduction. This paper, and most adaptive learning papers,
assume subjective forecasting models share a functional form with the VAR representation of the
MSV solution (“MSV learning”).
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(2016, 2020):24

wt = Λ(sq,t−1, sq,t)wt−1 + ηt (18)

where sq,t = (st−q+1, . . . , st) for some q ≥ 1, ηt is an arbitrary MDS, and as in the

linear DSGE framework, the value of Λ(sq,t−1, sq,t) depends on the model (9) and

model equilibrium (10) under study (e.g. see Farmer, Waggoner and Zha (2009) and

Cho (2020)). From (10) and (18), the common factor representation of a NF solution

associates a particular MSV solution to each NF solution of (9), and we let NFΦ̄(st)′

denote any mean-square stable NF solution associated to Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)).

Since ηt is arbitrary, infinitely many mean-square stable NF solutions, NFΦ̄(st)′ , exist

if one such NF solution exists. Notice that q ≥ 1 implies an equilibrium solution that

is “history-dependent” and depends on an arbitrary number of lags of st. Branch,

Davig, and McGough (2013) consider special cases of these history-dependent equi-

libria with q = 1, S = 2, and N(st) = 0 for all st, but they do not comment on the

existence of these or other NF solutions. We expand on their analysis by commenting

on the existence and learnability of these NF solutions for any q, S and N(st). Con-

cerning their existence, Proposition 1 of Cho (2020) argues that mean-square stable

NF solutions of the form (10) and (18 exist if and only if r(ΨF⊗F ) > 1. To study

whether these solutions are stable under learning, we impose the PLM:

CF-PLM: xt = a(sq+1,t) + b(sq+1,t)xt−1 + c(sq+1,t)ut + dwt (19)

In the last expression we economize on notation by rewriting (sq,t−1, sq,t) as sq+1,t (e.g.

if q = 1 then sq+1,t = (st−1, st)). A few remarks are in order. As in section 3.1, we

assume that agents observe wt and know Λ(sq,t−1, st) when they compute forecasts.

Second, we assume the agents’ forecasting models are consistent with the lag structure

24We focus on common factor representations in regime-switching cases because we do not find
that general form representations are learnable. This echoes findings in the linear cases.
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implied by (18), but we note that (19) is overparameterized relative to the solution

(10) and (18). Third, we could replace dwt with d(sq+1,t)wt in the PLM, but this

would not affect our main findings. Finally, (19) generalizes the “mean-value” PLM

of Branch, Davig and McGough (2013) to models with lagged endogenous variables

and general history-dependence (e.g. q ≥ 2). In short, the PLM (19) is logically

consistent with the belief that xt depends on wt and sq+1,t.

To compute the T-map, let Sq = Sq denote the number of regime histories of

length q and let Pq denote that transition matrix associated to these state histories

where Pq(i, j) = Pr(sq,t+1 = j|sq,t = i). Further, note that M(sq+1,t, sq+1,t+1) =

M(st, st+1), N(sq+1,t) = N(st), Q(sq+1,t) = Q(st), ρ(sq+1,t) = ρ(st), and define

Ξ(i, Bq) =
(
I −

∑Sq

j=1 Pq(i, j)M(i, j)b(j)
)

. Then the T-map is:

a(i) → Ξ(i, Bq+1)−1

Sq+1∑
j=1

Pq+1(i, j)M(i, j)a(j)

b(i) → Ξ(i, Bq+1)−1N(i)

c(i) → Ξ(i, Bq+1)−1

(
Sq+1∑
j=1

Pq+1(i, j)M(i, j)c(j)ρ(j) +Q(i)

)
d → d

where, again, d → d is based on standard arguments in the learning literature,

including in Branch, Davig, and McGough (2013). The subsystem associated to

(a(i), b(i), c(i)) assumes the same form as the T-map when agents use the MSV PLM

(12). Moreover, Ω(sq,t) = Ω(st) and F (sq,t, sq,t+1) = F (st, st+1). This means that the

relevant E-stability matrices associated to an NF solution of the form (10) and (11)

can be derived in the same fashion as matrices 1-3 in Proposition 1.25 Appendix E

presents these matrices and shows that the NF solution (10) and (18) is E-stable if

25As in section 3.1, the identity matrix is a relevant E-stability matrix. In keeping with the
literature, we modify the E-stability condition to allow for the real part of the eigenvalues of the
relevant matrices to be less than or equal to 1 for E-stability to obtain.
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the MSV solution associated to (10) is also E-stable.26

Proposition 3 Consider model (9) and MSV REE, Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)), and

suppose Assumptions A’-C’ hold. If Φ̄(st)
′ is E-stable then NFΦ̄(st)′ is E-stable.

Proof: see Appendix E. �

We are now in a position to characterize the existence and E-stability of indeter-

minate solutions of regime-switching models.

Proposition 4 Consider model (9) and REE, Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)), and sup-

pose Assumptions A’-C’ hold. If

1. re(ΨF ) < 1 < r(ΨF⊗F )

2. re(ΨΩ⊗F ) < 1

3. re(Ψρ⊗F ) < 1

then the following is true: (a) (9) is indeterminate and NFΦ̄(st)′ exist; (b) REE,

Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)), is E-stable; (c) NFΦ̄(st)′ is E-stable if agents use CF-

PLM, (19).

Proof: From Corollary 2, indeterminacy requires r(ΨF⊗F ) > 1 for any REE of

(9), and Proposition 1 of Cho (2020) shows that at least one mean-square stable

NF solution of the form (10) and (18) exists. E-stability requires re(Ψρ′⊗F ) < 1,

re(ΨF ) < 1 and re(ΨΩ⊗F ) < 1 by Proposition 1. Proposition 3 shows that any mean-

square stable NF stable solution associated to a given MSV solution is E-stable if the

associated MSV solution is E-stable. �
26We note that this finding does not depend on q. I.e. if the MSV solution is E-stable then a

mean-square stable NF solution with arbitrary q is mean-square stable.
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Like condition 1 of Theorem 5, condition 1 of Proposition 4 is particularly im-

portant: E-stability and indeterminacy requires re(ΨF ) < 1 < r(ΨF⊗F ). These

inequalities hold in three different cases:

Case A. 0 < re(ΨF ) < 1 < r(ΨF ) ≤ r(ΨF⊗F ) where the maximum of the

eigenvalues of ΨF is complex-valued.

Case B. re(ΨF ) < −1.

Case C. 0 < re(ΨF ) ≤ r(ΨF ) < 1 < r(ΨF⊗F ).

Cases A and B are akin to Cases 1 and 2 in the linear model (1), and they perfectly

coincide in the special case where S = 1. Case C is novel: when S > 1, 0 < re(ΨF ) =

r(ΨF ) < 1 < re(ΨF⊗F ) is possible, as demonstrated by Assertion 2 in Appendix A.3,

and also in Costa, Fragoso, and Marques (2005), and Cho (2016). It follows from C,

that Iterative E-stability conditions, i.e. r(ΨΩ⊗F ) < 1 and r(ΨF ) < 1, can be satisfied

by a REE of an indeterminate model (9).

Corollary 4 Consider (9), and suppose Assumptions A’-C’ hold. Then Iteratively

E-stable REE, Φ̄(st)
′ = (0n×1,Ω(st),Γ(st)), may exist when (9) is indeterminate.

Gibbs and McClung (2019) cite and use the E-stability conditions derived in this

paper to show that IE-stable REE of (9) are not susceptible to forward guidance puz-

zles. Thus, in indeterminate models (9), but not indeterminate models (1), agents

can coordinate on REE that generate well-behaved responses to anticipated struc-

tural changes, and can be rationalized as the outcome an eductive learning process.

This finding distinguishes some indeterminate equilibria of (9) from all indeterminate

equilibria of (1).

Our discussion of E-stability and indeterminacy in regime-switching models builds

on Branch, Davig and McGough (2013) in three ways. First, and as in section 2, we
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derive results that apply to the full class of DSGE models (9), including models with

lagged endogenous variables. Second, Proposition 3 states the conditions for the ex-

istence and E-stability of NF equilibria, whereas Branch, Davig and McGough (2013)

provide examples of E-stable NF equilibria. Third, we prove that indeterminate E-

stable REE of (9) can be IE-stable, which is not true for the indeterminate equilibria

of (1) under Assumptions A-C.

Figure 1 depicts the relationship between the determinacy properties of models (9)

and the E-stability of the MSV solution under the assumptions stated in Proposition

2.

Figure 1: Existence, Uniqueness and E-stability of Model Equilibria: Here
we suppose that Ω(st) denotes the MOD (minimum-of-modulus) solution (i.e. the
most stable solution; see Cho (2020) for more). The MOD solution can be E-stable
or E-unstable, and the underlying model is determinate (Det), indeterminate (Indet)
or has no stable solutions (NSS). Solutions to the southwest of the red lines are E-
stable, while solutions southwest of the blue lines are unique. Thus, determinacy is
stronger than E-stability.
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4 Application: New Keynesian Model

We introduce a simple New Keynesian model with recurring passive monetary policy

regimes to illustrate the new cases discussed in section 3 where E-stability is not suf-

ficient for determinacy. We also show that prolonged, even recurring, ZLB episodes

can be conducive to E-stability provided agents account for the transience and recur-

rence of these episodes in their decision-making (i.e. by employing regime-switching

forecasting models of the form (12)).27 The following describes a New Keynesian

model:

yt =
1

1 + η
Êtyt+1 +

η

1 + η
yt−1 −

1− η
σ(1 + η)

(it − Êtπt+1) + udt (20)

πt =
β

1 + βω
Êtπt+1 +

κ

1 + βω
yt +

ω

1 + βω
πt−1 + ust (21)

where y is the output gap, π is inflation, i is the nominal short-term interest rate, and

Êt denotes (potentially) non-rational expectations conditioned on time-t information.

ω captures inflation indexation in price-setting and η captures external habit forma-

tion in household. When η = ω = 0 the model collapses to a simple New Keynesian

model. By setting ω > 0 and η > 0 we can study how sources of persistence affect

the E-stability properties of policy rules. To complete the model, we pair (20) and

(21) with one of the following four policy rules:

it = φπ(st)πt + φy(st)yt (PR1)

it = φπ(st)Êtπt+1 + φy(st)Êtyt+1 (PR2)

it = φπ(st)πt−1 + φy(st)yt−1 (PR3)

27See a previous version of this paper, McClung (2019b), for evidence from real-time learning
simulations that agents can learn the equilibrium coefficients whenever E-stability conditions are
satisfied (and only when they are satisfied) and agents use (14) and (15) to update their beliefs.
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Equation (PR1) is a standard Taylor rule that sets i in response to contemporaneous

inflation and output; (PR2) is a forward-looking rule that sets i in response to ex-

pected inflation and output; (PR3) is a backward-looking rule that sets i in response

to lagged inflation and output.28

The variable st follows an exogenous 2-state Markov process (i.e. st ∈ {1, 2})

with transition matrix, P , where pij = Pr(st+1 = j|st = i). In our discussion of the

model here, we treat st = 1 as a “normal times” regime in which monetary policy is

active (e.g. the Taylor Principle, φπ > 1 is satisfied), and st = 2 represents a passive

monetary policy where interest rates are possibly pegged.29 Finally, we assume st = 2

is a transient regime (i.e. p22 < 1) but it recurs if p11 < 1.

We are interested in the behavior of expectations when st = 2 as the ZLB, and

interest pegs or passive monetary policy more generally, are widely associated with

E-instability.30 In the special case: p22 = 1 and st = 2, one could reasonably argue

that the correctly-specified PLM is a linear PLM of the form (7). The reason is

simple: if p22 = 1, the economy’s structure is time-invariant (i.e. the actual law of

motion assumes the form (1)) after the economy enters st = 2. However, linear PLMs

(7) are not consistent with beliefs that (a) st = 2 is transient (i.e. p22 < 1); (b) the

dynamics of π, y, i differ systematically across regimes, e.g. because monetary policy

is passive in one regime and active in the other. If agents anticipate a particular type

of regime change in the future–i.e. the change from st = 1 to st = 2–they should

attach ex ante probability to that regime change in their forecast. For example, if

agents believe Pr(st = 1|st−1 = 1) = p11, Pr(st = 2|st−1 = 2) = p22, and that the

28In (PR2), Êt denotes the fact that the central bank sets i as a function of private sector expec-
tations, which may be non-rational. Hence, we assume that policymakers and private sector agents
have identical information sets and expectations formation mechanisms.

29To drive interest rates to the ZLB we could augment the model with a switching intercept term
as in Bianchi and Melosi (2017) that pegs interest rates below steady state. It is straightforward
to show that the corresponding E-stability conditions are unaffected by the inclusion of such an
intercept term in the model.

30E.g. see Howitt (1992), Evans, Guse and Honkapohja (2008), Evans and McGough (2018),
Honkapohja and Mitra (2019), among others.
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within-regime dynamics of xt are described by xt = a(1) + b(1)xt−1 + c(1)ut when

st = 1 and xt = a(2) + b(2)xt−1 + c(2)ut when st = 2, then:

Êtxt+1 =
2∑
j=1

p2j (a(j) + b(j)xt + c(j)ρ(j)ut)

describes a forecast that is consistent with agents’ beliefs about the structure of the

economy. A linear PLM of the form (7) is never consistent with these beliefs, as a

linear PLM does not attach ex ante probability to a specific form of regime change–

even if agents believe in ongoing structural change and employ a constant gain learning

model with high gain parameter.31 Therefore we assume agents use regime-switching

PLMs of the form (12) when p22 < 1.

What are reasonable values of p22 and p11? One approach chooses values pii for

i = 1, 2 that deliver empirically plausible or theoretically interesting values of expected

regime durations, (1−pii)−1. Swanson and Williams (2014) find that the expected du-

ration of the ZLB was between 2-5 quarters prior to the Fed’s calendar-based forward

guidance in 2011, when the expected duration increased to 10-12 quarters. Kulish,

Morley and Robinson (2017) estimate the path of expected durations of the ZLB and

obtain similar results. Figure 2 maps expected durations in this range to values of

p22. Based on estimated expected durations from Swanson and Williams (2014) and

Kulish, Morley and Robinson (2017) and the relationship between expected duration

and p22 in our model, we restrict attention to values of p22 > .75.

Figures 3-6 display the E-stability properties of the model when policy regimes

are transient and recurring, and agents employ regime-switching PLMs of the form

31Many papers study environments in which statistical learning agents track ongoing structural
change using a high gain parameter in their estimation algorithm (e.g. see Hollmayr and Matthes
(2014)). Importantly, these applications do not assume that agents attach ex ante probability to
specific types of regime change in their forecasts, such as a structural change that moves the economy
from an ZLB policy regime to an active monetary policy regime, and consequently, these applications
model settings in which learning agents believe in ongoing structural change but are agnostic about
the type of regime change that may occur in the future.
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Figure 2: Expected Regime Duration and Transition Probability

(12) (i.e. Assumptions A’-C’ hold). Our benchmark calibration sets β = .995, σ = 2,

κ = .0164, and φy(1) = φy(2) = ω = η = 0. Our calibration of β and κ is motivated

by estimates in Dennis (2009) but we choose a lower, more commonly-used value of

σ then the estimated value obtained by Dennis (2009).32 Finally, we set ω = η = 0

so that we can first study E-stability in a simple New Keynesian framework, and we

set φy(1) = φy(2) = 0 so that the interest rate rules becomes an interest rate peg

when φπ(1) = φπ(2) = 0. We consider alternative calibrations and address robustness

concerns below. For both calibrations, we vary the remaining parameters φπ(1), φπ(2),

p11 and p22.

Each panel in Figure 3 shows combinations of φπ(1) and φπ(2) that generate deter-

minate, IE-stable and indeterminate, E-stable and indeterminate, or indeterminate

and E-unstable models for a given p11 and p22 under assumptions A’-C’ (with x = (y

π i)). In indeterminate cases, we find one IE-stable MSV solution, if we find an

32Dennis (2009) estimates θ = .882 where θ is the fraction of monopolistically competitive firms
who do not re-optimize in a given period. Substituting θ into (21) gives κ = (1− θ)(1− βθ)/(θ) =
.0164. Dennis (2009) also estimates σ = 5.647, ω = .685 and η = .824, but we set σ to a lower, more
commonly used value, and ω = η = 0 in order to restrict attention to the simple model.
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IE-stable solution at all.33

Figure 3: Contemporaneous Interest Rate Rule (PR1)

The red area is the determinacy region; the blue area is the IE-stability and indeter-
minacy region; the white area is the indeterminacy and E-instability region.

Figures 3-5 suggest that while indeterminacy regularly obtains in the model with

recurring pegs for values of p22 > .8, IE-stable REE exist for sufficiently high values of

φπ(1). We also find that backward-looking rules (PR3) promote the largest E-stability

and determinacy regions; IE-stable equilibria exist for p22 > .9 (i.e. expected ZLB

durations of at least 10 quarters).

In all cases, determinacy and E-stability regions shrink when β, κ or σ−1 increases.

Figure 6 displays determinacy and E-stability regions for the model with (PR1) for

different values of σ and κ.34 The top right panel of Figure 6 displays these regions for

33This can be explicitly verified using the Gröbner bases approach of Foerster, Rubio-Ramirez,
Waggoner, and Zha (2016) to obtain the full set of MSV solutions.

34Figure 6 assumes p11.99 and p22 = .95.
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a calibration modeled after estimates in Dennis (2009). For this particular calibration,

IE-stable solutions obtain when p11 = .99 and p22 = .95 (i.e. the expected duration

of ZLB regimes is 20 quarters).

Figure 4: Forward-looking Interest Rate Rule (PR2)

The red area is the determinacy region; the blue area is the IE-stability and indeter-
minacy region; the white area is the indeterminacy and E-instability region.

Finally, Figure 7 examines E-stability and determinacy across different values of η

and ω in the model with contemporaneous rule (PR1). We find that higher values of

η and ω tend to enlarge the determinacy regions in (φπ(1), φπ(2))-space, but shrink

the E-stability regions. Thus, accounting for sources of persistence in the model can

mitigate the potential for an indeterminate model to admit IE-stable solutions.

We note that the IE-stability condition assigned to an equilibrium of the model

(20)-(21) and (PR1) with η = ω = 0, which boils down to r(ΨF ) < 1 because there

are no lagged endogenous variables, coincides with the Long Run Taylor Principle
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of Davig and Leeper (2007). Branch, Davig and McGough (2013) also assert a close

relationship between E-stability and the LRTP in a class of purely forward-looking

models, and Cho (2016) and Barthelemy and Marx (2019) show that the LRTP is

substantially weaker than the determinacy conditions developed in their respective

papers. Our contribution in this section adds economic significance to their findings:

the LRTP, which is a special case of E-stability, tells us when agents can coordinate on

the MSV solution via adaptive learning mechanisms and, as it turns out, these condi-

tions are substantially weaker than the conditions under which a unique equilibrium

exists. This section’s numerical analysis shows that a similar relationship between

IE-stability and determinacy exists in models with lagged endogenous variables.

Figure 5: Backward-looking Interest Rate Rule (PR3)

The red area is the determinacy region; the blue area is the IE-stability and indeter-
minacy region; the white area is the indeterminacy and E-instability region.

The suite of models described by (20), (21) and (PR1),(PR2), or(PR3), nests
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Figure 6: Robustness with Contemporaneous Rule (PR1); p11 = .99 and p22 = .95.

The red area is the determinacy region; the blue area is the IE-stability and inde-
terminacy region; the white area is the indeterminacy and E-instability region. Each
panel assumes p11 = .99 and p22 = .95. All other parameters are set to benchmark
values.
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Figure 7: Robustness: Indexation and Habit Persistence

The red area is the determinacy region; the blue area is the IE-stability and inde-
terminacy region; the white area is the indeterminacy and E-instability region. Each
panel assumes φπ(1) = 1.5 and φπ(2) = .9, and that interest rates are given by (PR1).
All other parameters are set to benchmark values.
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permanent regimes models of the form (1) when φπ(st) = φπ and φy(st) = φy for all

st. Many papers, notably Bullard and Mitra (2002) and Evans and McGough (2005),

have studied the indeterminacy and E-stability properties of these permanent regime

models. Two themes from these analyses deserve emphasis:

1. Models of the form (20), (21) and (PR1), (PR2), or (PR3) admit multiple REE,

all of which are E-unstable under assumptions A-C with x = (y π i)′ or x = (y

π)’, when monetary policy is characterized by a permanent interest rate peg

regime (φπ(st) = φy(st) = 0 for all st). To see this, note that (PR1), (PR2),

and (PR3) are identical when φπ(st) = φy(st) = 0. It follows that

re(F ) = re

1 σ−1

κ κσ−1 + β

 = r(F ) > 1

provided κ > 0 and σ > 0. This shows that simple New Keynesian models of

the form (1) cannot support E-stable REE with interest rate peg regimes.

2. If a model of the form (20), (21) and (PR1), (PR2), or (PR3) admits multiple

REE then no REE of the model is IE-stable. This follows from Theorem 5.

Hence, our regime-switching model of adaptive learning helps to explain stability

at the ZLB. Under rational expectations these ZLB regimes are subject to extrinsic

sunspot volatility, and in standard models of adaptive learning, the ZLB regime is

also E-unstable.

5 Conclusion

This paper studies determinacy, indeterminacy and E-stability in a broad class of

Markov-switching rational expectations models. We first extend the seminal finding
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of McCallum (2007), that the unique REE of a linear model is learnable, to regime-

switching models. Then we characterize the conditions under which indeterminate

REE of regime-switching models are E-stable and point to new examples of indeter-

minate E-stable REE not previously studied in the literature. In particular, linear

DSGE models do not admit Iterative E-stable (IE-stable) solutions of indeterminate

models under the standard assumptions we consider, despite the fact that IE-stable

solutions exist in indeterminate regime-switching DSGE models, including in simple

New Keynesian models with recurring, transient interest rate peg regimes. If we

interpret these exogenous interest rate regimes as zero lower bound (ZLB) regimes,

these exercises furthermore reveal how to construct a model with stable expectations

at the ZLB.

Future research could examine whether estimated regime-switching DSGE mod-

els deliver a unique, E-stable equilibrium. Cho and Moreno (2019), McClung (2019)

show that some estimated regime-switching DSGE models from the literature are

indeterminate, and it remains to be seen whether these models admit E-stable equi-

libria. Future work may also examine the E-stability properties of regime-switching

models under the infinite-horizon learning approach of Preston (2005) and others.
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Appendix

Appendix A.. Proof of Proposition 1

In this section we derive the E-stability conditions stated in Proposition 1. More

specifically, we derive matrices 1-3 in Proposition 1, and a straightforward application

of the E-stability Principle completes the proof. Please note that this proof is also

demonstrated in Evans and Honkapohja (2001), p. 238.

We define Ξ(b) = (I −Mb) . The state-contingent T-map is given by:

a → Ξ(b)−1Ma

b → Ξ(b)−1N

c → Ξ(b)−1 (Mcρ+Q)

We can express the T-map as T (a, b, c) = (Ta(a, b), Tb(b), Tc(b, c)). Define Φ =

(a, b, c), and denote the REE of interest Φ̄ = (ā, b̄, c̄) = (0n×1,Ω,Γ). Our task is to

compute DT (Φ̄) where DT (Φ) = ∂T/∂Φ. By the E-stability Principle, Φ̄ is E-stable

if the real parts of the eigenvalues of the matrices comprising DT (Φ̄) are less than

one.

Again, it is helpful to consider T (a, b, c) = (Ta(a, b), Tb(b), Tc(b, c)). We compute

DT (Φ̄) in three stages:

1. Since the system Tb(b) decouples from the rest of the T-map equations, we

compute DTb(b̄) where DTb(b) = ∂Tb/∂b and establish conditions under which

b→ b̄ = Tb(b̄).

2. Having established stability of beliefs b under learning, we compute DTa(ā, b̄)

where DTa(a, b) = ∂Ta/∂a and determine when a→ ā = Ta(ā, b̄).

3. Having established stability of beliefs b under learning, we compute DTc(b̄, c̄)
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where DTc(b, c) = ∂Tc/∂c and determine when c→ c̄ = Tc(b̄, c̄).

To solve for DTb(b̄), we linearize Tb(b) at the REE and vectorize the resulting

equation. We then use the following identification rule: if vec(dTb) = Avec(db) then

A = DTb(b) where dTb is the linearized system of equations. We obtain:

DTb(b̄) = Ω′ ⊗ F

E-stability requires the real parts of Ω′ ⊗ F to be less than one. We now turn to the

equation for a:

Ta(a, b) = Ξ(b)−1Ma

Straightforward matrix calculus yields:

DTa(ā, b̄) = F

E-stability requires the real parts of F to be less than one. Finally, we consider the

equation for c:

Tc(b, c) = Ξ(b)−1(Mcρ+Q)

Using the same methods as before we obtain the following Jacobian evaluated at the

REE where c̄ = Γ:

DTc(b̄, c̄) = ρ′ ⊗ F

E-stability therefore requires the real parts of ρ⊗ F to be less than one. �
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Appendix B. Proof of Proposition 1

In this section we derive the E-stability conditions stated in Proposition 3. More

specifically, we derive matrices 1-3 in Proposition 3, and a straightforward application

of the E-stability Principle completes the proof.

We define B = (b(1) b(2) · · · b(S)) and Ξ(i, B) as in section 2.2, and let 0n denote

n× n matrix of zeros. Additionally, define A = (a(1)′ a(2)′ · · · a(S)′)′ and C = (c(1)

c(2) · · · c(S)). The state-contingent T-map is given by:

a(i) → Ξ(i, B)−1

S∑
j=1

pijM(i, j)a(j)

b(i) → Ξ(i, B)−1N(i)

c(i) → Ξ(i, B)−1

(
S∑
j=1

pijM(i, j)c(j)ρ(j) +Q(i)

)

We can express the T-map as T (A,B,C) = (TA(A,B), TB(B), TC(B,C)). Define

Φ = (A,B,C), and denote the REE of interest Φ̄ = (Ā, B̄, C̄) = (0nS×1,Ω,Γ) where

the matrices Ω and Γ collect the state-dependent rational expectations coefficients

Ω(st) and Γ(st), and are conformable to B and C respectively. Our task is to compute

DT (Φ̄) where DT (Φ) = ∂T/∂Φ. By the E-stability Principle, Φ̄ is E-stable if the real

parts of the eigenvalues of the matrices comprising DT (Φ̄) are less than one.

Again, it is helpful to consider T (A,B,C) = (TA(A,B), TB(B), TC(B,C)). We

compute DT (Φ̄) in three stages:

1. Since the system TB(B) decouples from the rest of the T-map equations, we

compute DTB(B̄) where DTB(B) = ∂TB/∂B and establish conditions under

which B → B̄ = TB(B̄).

2. Having established stability of beliefs B under learning, we compute DTA(Ā, B̄)

where DTA(A,B) = ∂TA/∂A and determine when A→ Ā = TA(Ā, B̄).
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3. Having established stability of beliefs B under learning, we compute DTC(B̄, C̄)

where DTC(B,C) = ∂TC/∂C and determine when C → C̄ = TC(B̄, C̄).

To solve for DTB(B̄), we linearize TB(B) at the REE and vectorize the resulting

equation. We then use the following identification rule: if vec(dTB) = Avec(dB) then

A = DTB(B), where dB = (db(1) db(2) · · · db(S)) and dTB is the linearized system

of equations. Using the rule: d(F (X)−1) = −F (X)−1(dF )F (X)−1, we obtain the

following linearization of TB(B):

dTB =


(Ξ(1, B)−1(

∑S
j=1 p1jM(1, j)db(j))Ξ(1, B)−1N(1))′

(Ξ(2, B)−1(
∑S

j=1 p2jM(2, j)db(j))Ξ(2, B)−1N(2))′

...

(Ξ(S,B)−1(
∑S

j=1 pSjM(S, j)db(j))Ξ(S,B)−1N(S))′



′

= Ξ(1, B)−1M(1, 1)p11(dB)


Ξ(1, B)−1N(1) 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n



+ Ξ(1, B)−1M(1, 2)p12(dB)


0n 0n · · · 0n

Ξ(1, B)−1N(1) 0n · · · 0n
...

. . .

0n 0n


+ · · ·

+ Ξ(1, B)−1M(1, S)p1S(dB)


0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

Ξ(1, B)−1N(1) 0n


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+ Ξ(2, B)−1M(2, 1)p21(dB)


0n Ξ(2, B)−1N(2) · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n



+ Ξ(2, B)−1M(2, 2)p22(dB)


0n 0n · · · 0n

0n Ξ(2, B)−1N(2) · · · 0n
...

. . .

0n 0n


+ · · ·

+ Ξ(2, B)−1M(2, S)p2S(dB)


0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n Ξ(2, B)−1N(2) 0n


+ · · ·

+ Ξ(S,B)−1M(S, S)pSS(dB)


0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n Ξ(S,B)−1N(S)


Using the rule vec(ABC) = C ′ ⊗ Avec(B), and the identification rule, we obtain:
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DTB(B) =


(Ξ(1, B)−1N(1))′ 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⊗ Ξ(1, B)−1M(1, 1)p11

+


0n (Ξ(1, B)−1N(1))′ · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⊗ Ξ(1, B)−1M(1, 2)p12

+ · · ·

+


0n 0n · · · (Ξ(1, B)−1N(1))′

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⊗ Ξ(1, B)−1M(1, S)p1S

+


0n 0n · · · 0n

(Ξ(2, B)−1N(2))′ 0n · · · 0n
...

. . .

0n 0n · · · 0n

⊗ Ξ(2, B)−1M(2, 1)p21

+


0n 0n · · · 0n

0n (Ξ(2, B)−1N(2))′ · · · 0n
...

. . .

0n 0n · · · 0n

⊗ Ξ(2, B)−1M(2, 2)p22

+ · · ·

+


0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · (Ξ(S,B)−1N(S))′

⊗ Ξ(S,B)−1M(S, S)pSS
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Therefore:

DTB(B̄) =


p11Ω(1)′ ⊗ F (1, 1) · · · p1SΩ(1)′ ⊗ F (1, S)

...
. . .

...

pS1Ω(S)′ ⊗ F (S, 1) · · · pSSΩ(S)′ ⊗ F (S, S)


≡ ΨΩ′⊗F

E-stability requires the real parts of ΨΩ′⊗F to be less than one. It is impor-

tant to note that our derivation of the E-stability conditions hinges on the following:

Ξ(i, B̄)−1N(i) = {I−(
∑S

j=1 pijM(i, j)Ω(j))}−1N(i) = {I−Et(M(i, st+1)Ω(st+1)}−1N(i) =

Ω(i) and Ξ(i, B̄)−1M(i, j) = {I − Et(M(i, st+1)Ω(st+1)}−1M(i, j) = F (i, j). We now

turn to the equation for A = (a(1)′ a(2)′ · · · a(S)′)′:

TA(A,B) =


Ξ(1, B)−1(

∑S
j=1 p1jM(1, j)a(j))

Ξ(2, B)−1(
∑S

j=1 p2jM(2, j)a(j))
...

Ξ(S,B)−1(
∑S

j=1 pSjM(S, j)a(j))



=


p11Ξ(1, B)−1M(1, 1) · · · p1SΞ(1, B)−1M(1, S)

...
. . .

...

pS1Ξ(S,B)−1M(S, 1) · · · pSSΞ(S,B)−1M(S, S)

A

Using the same methods as before we obtain the following Jacobian evaluated at the

REE where Ā = 0Sn×1 :
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DTA(Ā, B̄) =


p11F (1, 1) p12F (1, 2) . . . p1SF (1, S)

p21F (2, 1) p22F (2, 2) . . . p2SF (2, S)
...

. . .
...

pS1F (S, 1) pS2F (S, 2) . . . pSSF (S, S)

 ≡ ΨF

E-stability requires the real parts of ΨF to be less than one. Finally, we consider the

equation for C = (c(1)′ c(2)′ · · · c(S)′)′:

TC(B,C) =


(Ξ(1, B)−1(

∑S
j=1 p1jM(1, j)c(j)ρ(j) +Q(1)))′

(Ξ(2, B)−1(
∑S

j=1 p2jM(2, J)c(j)ρ(j) +Q(2)))′

...

(Ξ(S,B)−1(
∑S

j=1 pSjM(S, j)c(j)ρ(j) +Q(S)))′



′

Using the same methods as before we obtain the following Jacobian evaluated at the

REE where C̄ = (Γ(1) Γ(2) · · ·Γ(S)):

DTC(B̄, C̄) =


p11ρ(1)′ ⊗ F (1, 1) p12ρ(2)′ ⊗ F (1, 2) . . . p1Sρ(S)′ ⊗ F (1, S)

p21ρ(1)′ ⊗ F (2, 1) p22ρ(2)′ ⊗ F (2, 2) . . . p2Sρ(S)′ ⊗ F (2, S)
...

. . .
...

pS1ρ(1)′ ⊗ F (S, 1) pS2ρ(2)′ ⊗ F (S, 2) . . . pSSρ(S)′ ⊗ F (S, S)


≡ Ψρ′⊗F

�
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Appendix C. Proof of Proposition 2

We prove the the determinacy conditions in Proposition 2 are sufficient for the E-

stability conditions stated in Proposition 3. First we define the following arbitary

n× 1 MSS S−state stochastic processes:

yt+1 = A(st, st+1)yt +D(st+1)ηyt+1

zt+1 = B(st, st+1)zt + E(st+1)ηzt+1

We place no restrictions on A(st, st+1) and B(st, st+1) except of course that they are

conformable. We also define the corresponding matrix functions of n × n matrices

A(st, st+1) and B(st, st+1):

ΨA⊗B =


p11A(1, 1)⊗B(1, 1) . . . p1SA(1, S)⊗B(1, S)

...
. . .

...

pS1A(S, 1)⊗B(S, 1) . . . pSSA(S, S)⊗B(S, S)



Ψ̄A⊗B =


p11A(1, 1)⊗B(1, 1) . . . pS1A(S, 1)⊗B(S, 1)

...
. . .

...

p1SA(1, S)⊗B(1, S) . . . pSSA(S, S)⊗B(S, S)



ΨA =


p11A(1, 1) . . . p1SA(1, S)

...
. . .

...

pS1A(S, 1) . . . pSSA(S, S)



Ψ̄A =


p11A(1, 1) . . . pS1A(S, 1)

...
. . .

...

p1SA(1, S) . . . pSSA(S, S)


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Theorem 3. The generic process yt+1 = A(st, st+1)yt+D(st+1)ηyt+1 is MSS if and

only if r(Ψ̄A⊗A) < 1.

Proof: see Proposition 3.9 of Costa, Fragoso, and Marques (2005). �

Note that a MSV solution to (8) is an example of such a process with A(st, st+1) =

Ω(st+1).

Our result in Proposition 4 hinges on three assertions:

Assertion 1. If r(Ψ̄G⊗G) < 1 and r(ΨF⊗F ) < 1 then r(ΨG′⊗F ) < 1 where

ΨG′⊗F =


p11G(1, 1)′ ⊗ F (1, 1) . . . p1SG(1, S)′ ⊗ F (1, S)

...
. . .

...

pS1G(S, 1)′ ⊗ F (S, 1) . . . pSSG(S, S)′ ⊗ F (S, S)



Proof: see Appendix C. Proof of Lemma 1 in Cho (2016). �

Assertion 2. If r(Ψ̄A⊗A) = r(ΨA′⊗A′) < 1 then r(Ψ̄A) = r(ΨA′) < 1.

Proof: see Proposition 3.6 in Costa, Fragoso, and Marques (2005). �

Assertion 3. xt = Ω(st)xt−1 is a MSS process if and only if xt = Ω(st−1)xt−1 is a

MSS process.

Proof: From Theorem 3, xt = Ω(st)xt−1 is MSS if and only if:

r
(
(⊕Sj=1Ω(j)⊗ Ω(j))(P ′ ⊗ In2)

)
< 1

where ⊕Sj=1Ω(j)⊗ Ω(j) = diag(Ω(1)⊗ Ω(1), · · · ,Ω(S)⊗ Ω(S)). Since:

r
(
(⊕Sj=1Ω(j)⊗ Ω(j))(P ′ ⊗ In2)

)
= r

(
(P ′ ⊗ In2)(⊕Sj=1Ω(j)⊗ Ω(j))

)
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and r
(
(P ′ ⊗ In2)(⊕Sj=1Ω(j)⊗ Ω(j))

)
< 1 if and only if xt = Ω(st−1)xt−1 is MSS,

xt = Ω(st−1)xt−1 is MSS if and only if xt = Ω(st)xt−1 is MSS. �

We can equivalently state Proposition 4 as follows: if (1) r(Ψ̄Ω1⊗Ω1) < 1 and (2)

r(ΨF 1⊗F 1) < 135 the real parts of the eigenvalues of the following matrices are less

than one: (i) ΨΩ1′⊗F 1 ; (ii) ΨF 1 ; (iii) Ψ̄ρ′⊗F 1 . As in the main text, Ω1 denotes the

MOD solution.

We prove Proposition 4 as follows. First, determinacy conditions (1) and (2) imply

r(ΨΩ1′⊗F 1) < 1 by Assertion 1 and Assertion 3. Second, we assume that ut is MSS

such that r(Ψ̄ρ⊗ρ) < 1. By Assertion 1, r(Ψ̄ρ⊗ρ) < 1 and determinacy condition (2)

imply r(Ψ̄ρ′⊗F 1) < 1. Determinacy condition (2) implies r(ΨF 1) < 1 by Assertion 2.

Appendix D. Properties of Non-MOD Solutions

D.1. Linear Models

Here we show: r(F ) > 1 > r(Ω) for any dynamically stable solution (2) of model

(1) other than the MOD solution.36 First, by definition of the MOD: r(Ω) ≥ r(Ω1)

where Ω1 denotes the MOD solution. Suppressing ut in (1), this allows us to write

the solution (2) for xt as:

xt = Ω1xt−1

= MΩ1xt +Nxt−1

= M(Ω1 − Ω)xt +MΩxt +Nxt−1

= F (Ω1 − Ω)Ω1xt−1 + Ωxt−1

which implies Ω1 − Ω = F (Ω1 − Ω)Ω1 or vec(Ω1 − Ω) = ((Ω1)′ ⊗ F ))vec(Ω1 − Ω). It

follows that r((Ω1)′ ⊗ F )) = r(Ω1)r(F ) ≥ 1. Since r(Ω1) < 1, r(F ) > 1 > r(Ω) must

35Again, we abstract from the case r(ΨF 1⊗F 1) = 1
36Our argument is based on Appendix B of Cho (2020).
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hold for any dynamically stable solution of (1), other than the MOD solution, Ω1.

D.2. Markov-Switching Models

Here we show: r(ΨF⊗F ) > 1 > r(Ψ̄Ω⊗Ω) for any mean-square stable solution (10) of

model (9) other than the MOD solution.37 First by definition of the MOD: r(Ψ̄Ω⊗Ω) ≥

r(Ψ̄Ω1⊗Ω1) where Ω1(st) denotes the MOD solution. Suppressing ut in (9), this allows

us to write the solution (2) for xt as:

xt = Ω1(st)xt−1

= Et
(
M(st, st+1)Ω1(st+1)

)
xt +N(st)xt−1

= Et
(
M(st, st+1)(Ω1(st+1)− Ω(st+1))

)
xt + Et (M(st, st+1)Ω(st+1))xt +N(st)xt−1

= (In − Et (M(st, st+1)Ω(st+1)))−1 (Et (M(st, st+1)(Ω1(st+1)− Ω(st+1))
))
xt

+ Ω(st)xt−1

=
(
Et
(
F (st, st+1)(Ω1(st+1)− Ω(st+1))

))
Ω1(st)xt + Ω(st)xt−1

which implies

Ω1(st)− Ω(st) =
S∑
j=1

pstjF (st, j)(Ω
1(j)− Ω(j))Ω1(st) (22)

By vectorizing (22), we have u =
(
ΨΩ1′⊗F

)
u, where u = (vec(Ω1(1)− Ω(1))′, . . . ,

vec(Ω1(S)− Ω(S))′)′ and

ΨΩ1′⊗F =


p11Ω1(1)′ ⊗ F (1, 1) · · · p1SΩ1(1)′ ⊗ F (1, S)

...
. . .

...

pS1Ω1(S)′ ⊗ F (S, 1) · · · pSSΩ1(S)′ ⊗ F (S, S)


which implies r(ΨΩ1′⊗F ) ≥ 1. From Assertion 1 in Appendix C: r(ΨΩ1′⊗F ) ≥ 1 implies

37Our argument is based on Appendix B of Cho (2020).
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r(Ψ̄Ω1⊗Ω1) ≥ 1 or r(ΨF⊗F ) ≥ 1. Since r(Ψ̄Ω1⊗Ω1) < 1, it follows that r(ΨF⊗F ) > 1.38

Therefore, r(ΨF⊗F ) > 1 > r(Ψ̄Ω⊗Ω) must hold for any mean-square stable solution of

(9) other than the MOD solution.

Appendix E. Proof of Proposition 3

Define q̃ = q + 1. Following Appendix B., we can derive the relevant E-stability

matrices associated to the NF solution (10) and (18) (i.e. NFΦ̄(st)′) from the T-map

presented in section 3.2:

Ψ̃F =


Pq̃(1, 1)F (1, 1) . . . Pq̃(1, Sq̃)F (1, Sq̃)

...
. . .

...

Pq̃(Sq̃, 1)F (Sq̃, 1) . . . Pq̃(Sq̃, Sq̃)F (Sq̃, Sq̃)

 (23)

Ψ̃Ω′⊗F =


Pq̃(1, 1)Ω(1)′ ⊗ F (1, 1) . . . Pq̃(1, Sq̃)Ω(Sq̃)

′ ⊗ F (1, Sq̃)
...

. . .
...

Pq̃(Sq̃, 1)Ω(1)′ ⊗ F (Sq̃, 1) . . . Pq̃(Sq̃, Sq̃)Ω(Sq̃)
′ ⊗ F (Sq̃, Sq̃)

 (24)

Ψ̃ρ′⊗F =


Pq̃(1, 1)ρ(1)′ ⊗ F (1, 1) . . . Pq̃(1, Sq̃)ρ(Sq̃)

′ ⊗ F (1, Sq̃)
...

. . .
...

Pq̃(Sq̃, 1)ρ(1)′ ⊗ F (Sq̃, 1) . . . Pq̃(Sq̃, Sq̃)ρ(Sq̃)
′ ⊗ F (Sq̃, Sq̃)

 (25)

To compute Pq̃ and facilitate a comparison between the E-stability of the model’s

MSV solution, and E-stability of the NF solution, we index the set of state histories

of length q, {sq,t}, using the lexicographic (lex) order, an increasing numerical order

(numbers read left to right).39 With this ordering of {sq,t}, and given Ω(sq,t) = Ω(st),

ρ(sq,t) = ρ(st), F (sq,t, sq,t+1) = F (st, st+1), and Pq(sq,t, sq,t+1) ∈ {pij}, we can recast

38We discard the knife-edge case: r(ΨF⊗F ) = 1.
39To illustrate, suppose S = 2 and q = 3. Then sq,t = (st−2, st−1, st) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1)

, (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)} = Sq,t. The lex order over Sq,t gives: (1, 1, 1) ≺
(1, 1, 2) ≺ (1, 2, 1) ≺ (1, 2, 2) ≺ (2, 1, 1) ≺ (2, 1, 2) ≺ (2, 2, 1) ≺ (2, 2, 2). We now index states accord-
ing to this ordering: sq,t = 1 if sq,t = (1, 1, 1), sq,t = 2 if sq,t = (1, 1, 2), sq,t = 3 if sq,t = (1, 2, 1),
. . . ,sq,t = Sq if sq,t = (2, 2, 2).
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Ψ̃H for H = F, ρ⊗ F,Ω⊗ F as

Ψ̃H = iS ⊗ Iq ⊗ Ψ̂H (26)

Ψ̂H =


ΨH,1 0 . . . 0

0 ΨH,2 . . . 0
...

. . .
...

0 . . . ΨH,S

 (27)

where q ≥ 1, iS is an S by 1 vector of ones, ΨH,i denotes the i-th block of vH

rows of ΨH where vF = n, vρ⊗F = mn and vΩ⊗F = n2. For each H, rank(Ψ̃H) =

rank(Iq ⊗ Ψ̂H) ≤ SqvH .

To see that E-stability of the MSV solution, Φ̄(st)
′, is necessary for E-stability of

NFΦ̄(st)′ , let λH denote any eigenvalue of ΨH with corresponding right eigenvector,

µH . Then by explicit computation, we can show that (µ′H , µ
′
H , . . . , µ

′
H)′ is a right

eigenvector of Ψ̃H . Hence, the eigenvalues of ΨH are also eigenvalues of Ψ̃H which

implies r(ΨH) ≤ r(Ψ̃H) for H = F, ρ⊗ F,Ω⊗ F .

To see that E-stability of the MSV solution, Φ̄(st)
′, is also sufficient for E-stability

of NFΦ̄(st)′ let λ̃H denote any eigenvalue of Ψ̃H with corresponding left eigenvector,

µ̃′H . We can write: µ̃′H = (µ̃′1, µ̃
′
2, . . . , µ̃

′
S2q) where µi is vH times 1 for i = 1, . . . S2q.

Through explicit computation, the following holds

Ψ′H,i

(
S−1∑
k=0

µSqk+(j−1)S+i

)
= λ̃H


µ(j−1)S2+(i−1)S+1

...

µ(j−1)S2+(i−1)S+S


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for i = 1, . . . , S, j = 1, . . . , q. Summing over i, j and rearranging gives

(ΨH)′


∑Sq−1

l=0 µSl+1

...∑Sq−1
l=0 µSl+S

 = λ̃H


∑Sq−1

l=0 µSl+1

...∑Sq−1
l=0 µSl+S


Hence, λ̃H is also an eigenvalue of ΦH . It follows that r(ΨH) ≥ r(Ψ̃H) for H =

F, ρ⊗ F,Ω⊗ F . �
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